Advancement in manufacturing methods enable designing so called metamaterials with a tailor-made microstructure. Microstructure affects materials response within a length-scale, where we model this behavior by using the generalized thermomechanics. Strain gradient theory is employed as a higher-order theory with thermodynamics modeled as a first-order theory. Developing multiphysics models for heterogeneous materials is indeed a challenge and even this ``simplest'' model in generalized thermomechanics causes dozens of parameters to be determined. We develop a computational model by using a given microstructure, modeled as a periodic domain, and numerically calculate all parameters by means of asymptotic homogenization. Finite element method (FEM) is employed with the aid of open-source codes (FEniCS). Some example with symmetric and random distribution of voids in a model problem verifies the method and provides an example at which length-scale we need to consider generalized thermoeleasticity in composite materials.
翻译:制造方法的进步使得设计所谓的元材料能够使用定制的微结构。 微结构影响材料在长尺度内的反应, 我们通过使用通用的热力机械学来模拟这种行为。 Strain 梯度理论被作为一种高阶理论使用, 热力学是第一级理论的模型。 开发多元材料的多物理学模型确实是一个挑战, 甚至这个“ 简单” 模型在通用热力学中也造成了数十个参数的确定。 我们通过使用某种特定微结构来开发一个计算模型, 以定期域为模型, 并且用无同步同质化的方法从数字上计算所有参数。 在使用开源代码( FENICS ) 的情况下, 使用微量元素法( FEM ) 。 在模型问题中, 空白的对称和随机分布的一些实例验证了该方法, 并且提供了一个例子, 我们需要在何种长尺度上考虑复合材料的普遍热性。