Goltz and Reisig generalised Petri's concept of processes of one-safe Petri nets to general nets where places carry multiple tokens. BD-processes are equivalence classes of Goltz-Reisig processes connected through the swapping transformation of Best and Devillers; they can be considered as an alternative representation of runs of nets. Here we present an order respecting bijection between the BD-processes and the FS-processes of a countable net, the latter being defined -- in an analogous way -- as equivalence classes of firing sequences. Using this, we show that a countable net without binary conflicts has a (unique) largest BD-process.
翻译:Goltz和Reisig通用Petri的“一安全Petri网”到带有多种标志的普通网的流程概念。BD-流程是Goltz-Reisig流程的等效类别,通过交换最佳者和魔鬼者之间的转换而连接起来;它们可以被视为是蚊帐运行的替代表示。这里我们提出了一个命令,尊重BD-进程和可计算网的FS-流程之间的分离,后者以类似的方式被定义为(以类似方式)等效的射击序列。我们利用这个命令,我们证明一个不发生二元冲突的可计算网有一个(独一无二的)最大二元程序。