Many real-world problems require to optimise trajectories under constraints. Classical approaches are based on optimal control methods but require an exact knowledge of the underlying dynamics, which could be challenging or even out of reach. In this paper, we leverage data-driven approaches to design a new end-to-end framework which is dynamics-free for optimised and realistic trajectories. We first decompose the trajectories on function basis, trading the initial infinite dimension problem on a multivariate functional space for a parameter optimisation problem. A maximum \emph{a posteriori} approach which incorporates information from data is used to obtain a new optimisation problem which is regularised. The penalised term focuses the search on a region centered on data and includes estimated linear constraints in the problem. We apply our data-driven approach to two settings in aeronautics and sailing routes optimisation, yielding commanding results. The developed approach has been implemented in the Python library PyRotor.
翻译:许多现实世界问题要求优化受限制的轨道。 古典方法基于最佳控制方法,但需要确切了解基本动态,这可能具有挑战性甚至无法触及。 在本文中,我们利用数据驱动方法设计一个新的端到端框架,这种框架对优化和现实的轨迹是没有动态的。 我们首先在功能的基础上对轨迹进行分解,将初始无限的维度问题用多变量功能空间交换,解决参数优化问题。 将数据信息纳入信息的最大 \ emph{ a posori} 方法用于获取新的优化问题,并定期使用。 惩罚性术语侧重于以数据为中心的区域搜索,包括这一问题中估计的线性限制。 我们用数据驱动方法在航空和航道的两种环境下进行优化,并产生调控结果。 开发的方法已在Python 图书馆 PyRotor 中实施。