Conditional Variational Auto Encoders (VAE) are gathering significant attention as an Explainable Artificial Intelligence (XAI) tool. The codes in the latent space provide a theoretically sound way to produce counterfactuals, i.e. alterations resulting from an intervention on a targeted semantic feature. To be applied on real images more complex models are needed, such as Hierarchical CVAE. This comes with a challenge as the naive conditioning is no longer effective. In this paper we show how relaxing the effect of the posterior leads to successful counterfactuals and we introduce VAEX an Hierarchical VAE designed for this approach that can visually audit a classifier in applications.
翻译:作为可解释人工智能(XAI)工具,条件变异自动编码器(VAE)正在引起人们的极大关注。潜层空间的代码为产生反事实提供了一种理论上健全的方法,即对目标语义特征的干预导致的改变。需要将这种改变应用于更复杂的真实图像模型,例如等级式的CVAE。这带来了挑战,因为天性调节不再有效。在本文中,我们展示了减轻后人效应如何导致成功反事实,我们引入了VAEX(VAEX)为这一方法设计的高等级VAE,该方法可以对应用程序的分类进行直观审计。