Early diagnosis and intervention are clinically considered the paramount part of treating cerebral palsy (CP), so it is essential to design an efficient and interpretable automatic prediction system for CP. We highlight a significant difference between CP infants' frequency of human movement and that of the healthy group, which improves prediction performance. However, the existing deep learning-based methods did not use the frequency information of infants' movement for CP prediction. This paper proposes a frequency attention informed graph convolutional network and validates it on two consumer-grade RGB video datasets, namely MINI-RGBD and RVI-38 datasets. Our proposed frequency attention module aids in improving both classification performance and system interpretability. In addition, we design a frequency-binning method that retains the critical frequency of the human joint position data while filtering the noise. Our prediction performance achieves state-of-the-art research on both datasets. Our work demonstrates the effectiveness of frequency information in supporting the prediction of CP non-intrusively and provides a way for supporting the early diagnosis of CP in the resource-limited regions where the clinical resources are not abundant.
翻译:早期诊断和干预被认为是治疗脑瘫(CP)的重要部分,因此设计一种高效且可解释的自动预测系统对于CP患者至关重要。本研究发现,CP婴儿的运动频率与健康组存在显著差异,可以提高预测性能。然而,现有的基于深度学习的方法并没有利用婴儿运动的频率信息进行CP预测。因此,本文提出一种频率注意力启示的图卷积网络,并在两个常见的RGB视频数据集MINI-RGBD和RVI-38上进行验证。本文提出的频率注意力模块有助于提高分类性能和系统的可解释性。此外,本文设计了一种频率分箱方法,可以保留人类关节位置数据的关键频率,同时滤除噪声,使预测性能在两个数据集上达到最新的研究水平。本文证明了频率信息在非侵入式支持CP预测中的有效性,并为在医疗资源有限的地区支持CP的早期诊断提供了一种途径。