Early diagnosis and intervention are clinically considered the paramount part of treating cerebral palsy (CP), so it is essential to design an efficient and interpretable automatic prediction system for CP. We highlight a significant difference between CP infants' frequency of human movement and that of the healthy group, which improves prediction performance. However, the existing deep learning-based methods did not use the frequency information of infants' movement for CP prediction. This paper proposes a frequency attention informed graph convolutional network and validates it on two consumer-grade RGB video datasets, namely MINI-RGBD and RVI-38 datasets. Our proposed frequency attention module aids in improving both classification performance and system interpretability. In addition, we design a frequency-binning method that retains the critical frequency of the human joint position data while filtering the noise. Our prediction performance achieves state-of-the-art research on both datasets. Our work demonstrates the effectiveness of frequency information in supporting the prediction of CP non-intrusively and provides a way for supporting the early diagnosis of CP in the resource-limited regions where the clinical resources are not abundant.


翻译:早期诊断和干预被认为是治疗脑瘫(CP)的重要部分,因此设计一种高效且可解释的自动预测系统对于CP患者至关重要。本研究发现,CP婴儿的运动频率与健康组存在显著差异,可以提高预测性能。然而,现有的基于深度学习的方法并没有利用婴儿运动的频率信息进行CP预测。因此,本文提出一种频率注意力启示的图卷积网络,并在两个常见的RGB视频数据集MINI-RGBD和RVI-38上进行验证。本文提出的频率注意力模块有助于提高分类性能和系统的可解释性。此外,本文设计了一种频率分箱方法,可以保留人类关节位置数据的关键频率,同时滤除噪声,使预测性能在两个数据集上达到最新的研究水平。本文证明了频率信息在非侵入式支持CP预测中的有效性,并为在医疗资源有限的地区支持CP的早期诊断提供了一种途径。

0
下载
关闭预览

相关内容

这是第25届年度会议,讨论有约束计算的所有方面,包括理论、算法、环境、语言、模型、系统和应用,如决策、资源分配、调度、配置和规划。为了纪念25周年,吉恩·弗洛伊德创作了一本“虚拟卷”来庆祝这个系列会议。信息可以在这里找到。约束编程协会有本系列中以前的会议列表。CP 2019计划将包括展示关于约束技术的高质量科学论文。除了通常的技术轨道外,CP 2019年会议还将有主题轨道。每个赛道都有一个专门的小组委员会,以确保有能力的评审员将审查这些领域的人提交的论文。 官网链接:https://cp2019.a4cp.org/index.html
专知会员服务
50+阅读 · 2021年5月19日
专知会员服务
123+阅读 · 2020年9月8日
GNN 新基准!Long Range Graph Benchmark
图与推荐
0+阅读 · 2022年10月18日
AI可解释性文献列表
专知
42+阅读 · 2019年10月7日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
【推荐】ResNet, AlexNet, VGG, Inception:各种卷积网络架构的理解
机器学习研究会
20+阅读 · 2017年12月17日
可解释的CNN
CreateAMind
17+阅读 · 2017年10月5日
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Arxiv
15+阅读 · 2021年6月27日
Geometric Graph Convolutional Neural Networks
Arxiv
10+阅读 · 2019年9月11日
Simplifying Graph Convolutional Networks
Arxiv
12+阅读 · 2019年2月19日
Arxiv
26+阅读 · 2018年2月27日
VIP会员
相关VIP内容
专知会员服务
50+阅读 · 2021年5月19日
专知会员服务
123+阅读 · 2020年9月8日
相关基金
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Top
微信扫码咨询专知VIP会员