In clinical procedures of angioplasty (i.e., open clogged coronary arteries), devices such as balloons and stents need to be placed and expanded in arteries under the guidance of X-ray fluoroscopy. Due to the limitation of X-ray dose, the resulting images are often noisy. To check the correct placement of these devices, typically multiple motion-compensated frames are averaged to enhance the view. Therefore, device tracking is a necessary procedure for this purpose. Even though angioplasty devices are designed to have radiopaque markers for the ease of tracking, current methods struggle to deliver satisfactory results due to the small marker size and complex scenes in angioplasty. In this paper, we propose an end-to-end deep learning framework for single stent tracking, which consists of three hierarchical modules: U-Net based landmark detection, ResNet based stent proposal and feature extraction, and graph convolutional neural network (GCN) based stent tracking that temporally aggregates both spatial information and appearance features. The experiments show that our method performs significantly better in detection compared with the state-of-the-art point-based tracking models. In addition, its fast inference speed satisfies clinical requirements.
翻译:在血管成形器的临床程序(即,露天凝固的冠状动脉)中,气球和气球等装置需要在X射线含氟镜学的指导下在动脉中放置和扩大。由于X射线剂量的限制,由此产生的图像往往很吵。为了检查这些装置的正确位置,通常平均使用多个运动补偿框架来增强视图。因此,装置跟踪是实现这一目标的一个必要程序。即使设计成有射线标记以方便跟踪,但目前由于在血管成形器学中标记大小小和场景复杂而难以取得令人满意的结果的方法。在本文件中,我们提议一个端对端的深度学习框架,用于单一脉动跟踪,由三个等级模块组成:基于UNet的地标探测、基于ResNet的平面图建议和特征提取,以及基于图表的神经神经神经网络(GCN),用以跟踪基于时间聚合的信息和外观特征。实验模型显示,我们的方法在检测中比其快速速度的跟踪要求要好得多。