We consider the problem of domain approximation in finite element methods for Maxwell equations on curved domains, i.e., when affine or polynomial meshes fail to exactly cover the domain of interest. In such cases, one is forced to approximate the domain by a sequence of polyhedral domains arising from inexact meshes. We deduce conditions on the quality of these approximations that ensure rates of error convergence between discrete solutions -- in the approximate domains -- to the continuous one in the original domain.
翻译:我们考虑了在曲线域上的马克斯韦尔方程式的有限要素方法中域近似问题,即当线性或多面性网目未能完全覆盖利益领域时。在这种情况下,人们被迫通过不精确的网目产生的一系列多面性域来接近域。我们推断出这些近似质量的条件,以确保离散解决办法 -- -- 近似领域 -- -- 与原始域的连续解决办法之间的误差率趋同。