The average coflow completion time (CCT) is the standard performance metric in coflow scheduling. However, standard CCT minimization may introduce unfairness between the data transfer phase of different computing jobs. Thus, while progress guarantees have been introduced in the literature to mitigate this fairness issue, the trade-off between fairness and efficiency of data transfer is hard to control. This paper introduces a fairness framework for coflow scheduling based on the concept of slowdown, i.e., the performance loss of a coflow compared to isolation. By controlling the slowdown it is possible to enforce a target coflow progress while minimizing the average CCT. In the proposed framework, the minimum slowdown for a batch of coflows can be determined in polynomial time. By showing the equivalence with Gaussian elimination, slowdown constraints are introduced into primal-dual iterations of the CoFair algorithm. The algorithm extends the class of the sigma-order schedulers to solve the fair coflow scheduling problem in polynomial time. It provides a 4-approximation of the average CCT w.r.t. an optimal scheduler. Extensive numerical results demonstrate that this approach can trade off average CCT for slowdown more efficiently than existing state of the art schedulers.
翻译:平均共同流完成时间(CCT)是共同流列表中的标准业绩衡量标准值。然而,标准的CCT最小化可能在不同计算工作的数据传输阶段之间造成不公平。因此,虽然在文献中引入了进步保障以缓解这一公平问题,但数据传输的公平和效率之间的权衡很难控制。本文根据减速概念为共同流列表引入了一个公平框架,即,与孤立相比,一次连流的性能损失。通过控制减速,有可能在最小化平均CCT的同时强制执行目标共流进展。在拟议框架中,一组共同流的最小减速可以在多元时间内确定。通过显示加西亚的消除等值,将减缓限制引入到CoFair算法的初等同性重复中。算法将微调排程表的类别扩展,以解决多边时间的公平共同流调度问题。它为平均CCT w.r.t.提供4倍的乘法化。在拟议框架中,一组共同流流的最小减速速度可以在多数值时间内确定。通过显示与Gaus的等值,从而能够更高效地显示现有C交易的平均速度。