Use of the electroencephalogram (EEG) and machine learning approaches to recognize emotions can facilitate affective human computer interactions. However, the type of EEG data constitutes an obstacle for cross-individual EEG feature modelling and classification. To address this issue, we propose a deep-learning framework denoted as a dynamic entropy-based pattern learning (DEPL) to abstract informative indicators pertaining to the neurophysiological features among multiple individuals. DEPL enhanced the capability of representations generated by a deep convolutional neural network by modelling the interdependencies between the cortical locations of dynamical entropy based features. The effectiveness of the DEPL has been validated with two public databases, commonly referred to as the DEAP and MAHNOB-HCI multimodal tagging databases. Specifically, the leave one subject out training and testing paradigm has been applied. Numerous experiments on EEG emotion recognition demonstrate that the proposed DEPL is superior to those traditional machine learning (ML) methods, and could learn between electrode dependencies w.r.t. different emotions, which is meaningful for developing the effective human-computer interaction systems by adapting to human emotions in the real world applications.


翻译:使用电子脑图和机器学习方法来识别情感,可以促进人的情感互动;然而,电子脑图和机器学习方法的种类数据构成了跨个体 EEG特征建模和分类的障碍;为解决这一问题,我们提议了一个深学习框架,其用意是动态的英特罗比模式学习(DEPL),用于与多个个人的神经生理特征有关的抽象信息指标。DEPL通过模拟动态英特基特征的交替地点之间的交替性,增强了由深共振神经网络产生的表达能力。DEPL的有效性已经由两个公共数据库(通常称为DEAP和MAHNOB-HCI)验证,这两个公共数据库称为DEAP和MAHNOB-HCI多式标记数据库。具体地说,将一个专题留出培训和测试模式已经应用。关于EEG情感认知的许多实验表明,拟议的DEP优于这些传统的机器学习方法,可以学习不同的电子依赖性情感,这对通过适应现实世界中的人类情感,开发有效的人体计算机互动系统具有意义。

1
下载
关闭预览

相关内容

Python计算导论,560页pdf,Introduction to Computing Using Python
专知会员服务
72+阅读 · 2020年5月5日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
150+阅读 · 2019年10月12日
开源书:PyTorch深度学习起步
专知会员服务
50+阅读 · 2019年10月11日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
已删除
将门创投
7+阅读 · 2019年10月15日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
计算机 | USENIX Security 2020等国际会议信息5条
Call4Papers
7+阅读 · 2019年4月25日
人工智能 | SCI期刊专刊/国际会议信息7条
Call4Papers
7+阅读 · 2019年3月12日
Unsupervised Learning via Meta-Learning
CreateAMind
41+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
计算机 | CCF推荐会议信息10条
Call4Papers
5+阅读 · 2018年10月18日
Reinforcement Learning: An Introduction 2018第二版 500页
CreateAMind
11+阅读 · 2018年4月27日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
VIP会员
相关资讯
已删除
将门创投
7+阅读 · 2019年10月15日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
计算机 | USENIX Security 2020等国际会议信息5条
Call4Papers
7+阅读 · 2019年4月25日
人工智能 | SCI期刊专刊/国际会议信息7条
Call4Papers
7+阅读 · 2019年3月12日
Unsupervised Learning via Meta-Learning
CreateAMind
41+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
计算机 | CCF推荐会议信息10条
Call4Papers
5+阅读 · 2018年10月18日
Reinforcement Learning: An Introduction 2018第二版 500页
CreateAMind
11+阅读 · 2018年4月27日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
Top
微信扫码咨询专知VIP会员