Many recent works have proposed regression models which are invariant across data collection environments [Rothenh\"ausler et al., 2019, Peters et al., 2016, Heinze-Deml et al., 2018, Meinshausen, 2018, Gimenez andRothenh\"ausler, 2021]. Under conditions on the environments and type of invariance imposed, these estimators often have a causal interpretation. One recent example is the Causal Dantzig (CD). In this work we derive the CD as generalized method of moment (GMM) estimator. In this form, the environment plays a role nearly identical to the instrument in classical estimators such as Two Stage Least Squares (TSLS), illustrating a close connection between the concepts of instruments, environments, and invariance. We show that several of the conceptual motivations behind environments such as do--interventions can be modeled with instrumental variables. This unified treatment of environments and instruments produces many practical results including: 1) immediate generalization of the Causal Dantzig to problems with continuous instruments/environments 2) straightforward asymptotic results based on GMM theory and 3) new hybrid estimators which have properties superior to CD or TSLS alone. We illustrate these results in simulations and an application to a Flow Cytometry data set.
翻译:许多最近开展的工作都提出了在数据收集环境中变化不定的回归模型[Rothenh\'ausler等人,2019年,Peters等人,2016年,Heinze-Deml等人,2018年,Meinshausen,2018年,Gimenez和Rothenh\'ausler,2021年]。在环境条件和差异类型的条件下,这些估计符往往有因果解释。最近的一个例子是Causal Dantzig(CD)。在这项工作中,我们把CD作为时空(GMM)测算器的通用方法。在这种形式中,环境的作用与古典估测仪(如两阶段最低广场,2018年,Gimez-Deml等人和Rothenh\'ausler,2021年)中的仪器几乎完全相同,表明工具、环境和差异概念背后的一些动机,如“行为干预”等环境变量可以模拟。这种环境和工具的统一处理产生了许多实际结果,包括:(1) Causal Dantzig与问题直接概括(GMM) 和“连续仪器/环境模型应用”的结果,仅为直观的SLismatial Stal Stalalal 的模型。