Multicollinearity produces an inflation in the variance of the Ordinary Least Squares estimators due to the correlation between two or more independent variables (including the constant term). A widely applied solution is to estimate with penalized estimators (such as the ridge estimator, the Liu estimator, etc.) which exchange the mean square error by the bias. Although the variance diminishes with these procedures, all seems to indicate that the inference is lost and also the goodness of fit. Alternatively, the raise regression (\cite{Garcia2011} and \cite{Salmeron2017}) allows the mitigation of the problems generated by multicollinearity but without losing the inference and keeping the coefficient of determination. This paper completely formalizes the raise estimator summarizing all the previous contributions: its mean square error, the variance inflation factor, the condition number, the adequate selection of the variable to be raised, the successive raising and the relation between the raise and the ridge estimator. As a novelty, it is also presented the estimation method, the relation between the raise and the residualization, it is analyzed the norm of the estimator and the behaviour of the individual and joint significance test and the behaviour of the mean square error and the coefficient of variation. The usefulness of the raise regression as alternative to mitigate the multicollinearity is illustrated with two empirical applications.


翻译:虽然差异因偏差而缩小,但似乎都表明,由于两个或两个以上独立变量(包括常数)之间的相互关系,普通最低广场估计值的差价产生了通货膨胀。一个广泛应用的解决办法是,用惩罚性估计值(如山脊估测仪、刘测测算仪等)来估算,这些估算值以偏差来交换中方差方差。虽然差异随着这些程序而减少,但所有差异似乎都表明,假设值已经丢失,而且合适性也很好。或者,上升回归值(cite{Garcia2011}和cite{Salmeron2017})使得能够缓解多极性应用产生的问题,但又不失去推论,并保持确定系数。本文完全正式确定了概述以往所有贡献的加比值:其平均平差差、差异性通货膨胀系数、条件号、适当选择要提出变量、不断提高值以及峰值和山脊估估测算仪之间的关系。作为创新方法,还介绍了多极性应用的估算方法、提高值和估算值和估测算值之间的关系,同时分析了其测试性价值和估测算法和估测算法的比值的比值的比值的比值。

0
下载
关闭预览

相关内容

专知会员服务
50+阅读 · 2020年12月14日
【干货书】机器学习速查手册,135页pdf
专知会员服务
125+阅读 · 2020年11月20日
Python分布式计算,171页pdf,Distributed Computing with Python
专知会员服务
107+阅读 · 2020年5月3日
专知会员服务
159+阅读 · 2020年1月16日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
大数据 | 顶级SCI期刊专刊/国际会议信息7条
Call4Papers
10+阅读 · 2018年12月29日
Ray RLlib: Scalable 降龙十八掌
CreateAMind
9+阅读 · 2018年12月28日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
Capsule Networks解析
机器学习研究会
11+阅读 · 2017年11月12日
【推荐】SVM实例教程
机器学习研究会
17+阅读 · 2017年8月26日
Arxiv
0+阅读 · 2021年6月16日
Arxiv
0+阅读 · 2021年6月16日
Arxiv
13+阅读 · 2021年5月25日
Arxiv
6+阅读 · 2018年10月3日
VIP会员
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
大数据 | 顶级SCI期刊专刊/国际会议信息7条
Call4Papers
10+阅读 · 2018年12月29日
Ray RLlib: Scalable 降龙十八掌
CreateAMind
9+阅读 · 2018年12月28日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
Capsule Networks解析
机器学习研究会
11+阅读 · 2017年11月12日
【推荐】SVM实例教程
机器学习研究会
17+阅读 · 2017年8月26日
Top
微信扫码咨询专知VIP会员