A labelled Markov process (LMP) consists of a measurable space $S$ together with an indexed family of Markov kernels from $S$ to itself. This structure has been used to model probabilistic computations in Computer Science, and one of the main problems in the area is to define and decide whether two LMP $S$ and $S'$ "behave the same". There are two natural categorical definitions of sameness of behavior: $S$ and $S'$ are bisimilar if there exist an LMP $T$ and measure preserving maps forming a diagram of the shape $ S\leftarrow T \rightarrow{S'}$; and they are behaviorally equivalent if there exist some $ U$ and maps forming a dual diagram $ S\rightarrow U \leftarrow{S'}$. These two notions differ for general measurable spaces but Doberkat (extending a result by Edalat) proved that they coincide for analytic Borel spaces, showing that from every diagram $ S\rightarrow U \leftarrow{S'}$ one can obtain a bisimilarity diagram as above. Moreover, the resulting square of measure preserving maps is commutative (a "semipullback"). In this paper, we extend the previous result to measurable spaces $S$ isomorphic to a universally measurable subset of a Polish space with the trace of the Borel $\sigma$-algebra, using a version of Strassen's theorem on common extensions of finitely additive measures.
翻译:贴有标签的Markov 进程( LMP) 由可测量的空间 $S$ 和由美元到美元组成的Markov 内核的索引式组合组成。 这个结构已被用于计算机科学的概率计算模型, 而这个区域的主要问题之一是定义和决定两个LMP$S美元和美元是否“与美元相同 ” 。 有两种关于同一行为的自然绝对性定义: $S和$S是相近的。 如果存在一个LMP$, 美元和$S$是相近的, 并且测量地图, 以 $Sleftrow T\ rightrow{S} 构成形状的图表; 如果存在一些美元, 则用于模拟计算机科学的概率计算, 区域的主要问题之一是定义和确定两个图 $Srightrowrightrow U\leftrowr{S} 。 这两个概念对于一般的可测量空间, 但Doberkat( 由Edalat提供的结果) 证明它们与具有解析性的博尔空空间空间空间空间相匹配, 从每张的直径直径直径直径直径显示, 一个可以获取一个平方平方平方的平方的平方的平方图。