Security concerns about a machine learning model used in a prediction-as-a-service include the privacy of the model, the query and the result. Secure inference solutions based on homomorphic encryption (HE) and/or multiparty computation (MPC) have been developed to protect all the sensitive information. One of the most efficient type of solution utilizes HE for linear layers, and MPC for non-linear layers. However, for such hybrid protocols with semi-honest security, an adversary can malleate the intermediate features in the inference process, and extract model information more effectively than methods against inference service in plaintext. In this paper, we propose SEEK, a general extraction method for hybrid secure inference services outputing only class labels. This method can extract each layer of the target model independently, and is not affected by the depth of the model. For ResNet-18, SEEK can extract a parameter with less than 50 queries on average, with average error less than $0.03\%$.
翻译:对预测服务中使用的机器学习模型的安全关切包括模型的隐私、查询和结果。基于同质加密和(或)多功能计算(MPC)的可靠推断解决方案已经开发,以保护所有敏感信息。最有效的解决方案类型之一是线性层使用HE, 非线性层使用MPC。然而,对于半诚实安全的混合协议,对手可以利用推断过程中的中间特征,并更有效地提取模型信息,而不是针对纯文本中的推断服务的方法。在本文中,我们提议SEEC是混合安全推断服务的一般提取方法,只输出类标签。这种方法可以独立地提取目标模型的每一层,不受模型深度的影响。关于ResNet-18,SEEC可以提取平均不到50个查询的参数,平均误差小于0.03美元。