We introduce a randomized algorithm, namely RCHOL, to construct an approximate Cholesky factorization for a given Laplacian matrix (a.k.a., graph Laplacian). The exact Cholesky factorization for the matrix introduces a clique in the associated graph after eliminating every row/column. By randomization, RCHOL keeps a sparse subset of the edges in the clique using a random sampling developed by Spielman and Kyng. We prove RCHOL is breakdown free and apply it to solving large sparse linear systems with symmetric diagonally-dominant matrices. In addition, we parallelize RCHOL based on the nested dissection ordering for shared-memory machines. Numerical experiments demonstrated the robustness and the scalability of RCHOL. For example, our parallel code scaled up to 64 threads on a single node for solving the 3D Poisson equation, discretized with the 7-point stencil on a $1024\times 1024 \times 1024$ grid, or one billion unknowns.
翻译:我们引入了随机算法, 即 RCHOL, 用于为给定的 Laplacian 矩阵( a.k.a., 图形 Laplacecian ) 构建大致的 Challosky 系数化。 矩阵精确的 Challosky 系数化在消除每行/ 栏后在相关图形中引入了球形。 通过随机化, RCHOL 使用由 Spielman 和 Kyng 开发的随机抽样, 在球形中保留了一个微小的边缘子集。 我们证明 RCHOL 是免费的, 并应用于用对称对称对称矩阵解决大型稀薄线性系统 。 此外, 我们根据共享模拟机器的嵌入解剖命令将 RCHOL 平行化 。 数字实验显示了 RCHOL 的坚固性和可缩缩放性。 例如, 我们的平行代码在一个节点上达到64 线条线条线条, 以解决 3D Poisson 等式, 。 我们的代码与 1024\ 时间 1024\ 时间 1024\ 时间 1040 或10亿 未知 。