This paper deals with regularized Newton methods, a flexible class of unconstrained optimization algorithms that is competitive with line search and trust region methods and potentially combines attractive elements of both. The particular focus is on combining regularization with limited memory quasi-Newton methods by exploiting the special structure of limited memory algorithms. Global convergence of regularization methods is shown under mild assumptions and the details of regularized limited memory quasi-Newton updates are discussed including their compact representations. Numerical results using all large-scale test problems from the CUTEst collection indicate that our regularized version of L-BFGS is competitive with state-of-the-art line search and trust-region L-BFGS algorithms and previous attempts at combining L-BFGS with regularization, while potentially outperforming some of them when nonmonotonicity is involved.


翻译:本文论述正规化的牛顿方法,这是一组灵活的不受限制的优化算法,具有线性搜索和信任区域方法的竞争力,并有可能将两者的吸引因素结合起来,特别侧重于利用有限的记忆算法的特殊结构,将正规化与有限的记忆准牛顿方法相结合;全球正规化方法的趋同以温和的假设为例,讨论正规化的有限记忆准牛顿更新的细节,包括它们的缩略语。CUTEst收藏的所有大型测试问题,使用所有大规模测试问题的数值结果显示,我们的常规化L-BFGS版本具有竞争力,与最新水平的线搜索和信任区域L-BFGS算法以及以往将L-BFGS与正规化相结合的尝试相结合的尝试,同时在涉及非流动时可能超过其中一些。

0
下载
关闭预览

相关内容

专知会员服务
44+阅读 · 2020年7月29日
零样本文本分类,Zero-Shot Learning for Text Classification
专知会员服务
96+阅读 · 2020年5月31日
深度强化学习策略梯度教程,53页ppt
专知会员服务
183+阅读 · 2020年2月1日
专知会员服务
162+阅读 · 2020年1月16日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
60+阅读 · 2019年10月17日
强化学习最新教程,17页pdf
专知会员服务
181+阅读 · 2019年10月11日
逆强化学习-学习人先验的动机
CreateAMind
16+阅读 · 2019年1月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
18+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
【NIPS2018】接收论文列表
专知
5+阅读 · 2018年9月10日
Jointly Improving Summarization and Sentiment Classification
黑龙江大学自然语言处理实验室
3+阅读 · 2018年6月12日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
精品公开课 | 随机梯度下降算法综述
七月在线实验室
13+阅读 · 2017年7月11日
Arxiv
0+阅读 · 2021年5月27日
Arxiv
6+阅读 · 2019年12月30日
Deep Learning
Arxiv
6+阅读 · 2018年8月3日
VIP会员
相关资讯
逆强化学习-学习人先验的动机
CreateAMind
16+阅读 · 2019年1月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
18+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
【NIPS2018】接收论文列表
专知
5+阅读 · 2018年9月10日
Jointly Improving Summarization and Sentiment Classification
黑龙江大学自然语言处理实验室
3+阅读 · 2018年6月12日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
精品公开课 | 随机梯度下降算法综述
七月在线实验室
13+阅读 · 2017年7月11日
Top
微信扫码咨询专知VIP会员