Label distribution learning (LDL) is an effective method to predict the label description degree (a.k.a. label distribution) of a sample. However, annotating label distribution (LD) for training samples is extremely costly. So recent studies often first use label enhancement (LE) to generate the estimated label distribution from the logical label and then apply external LDL algorithms on the recovered label distribution to predict the label distribution for unseen samples. But this step-wise manner overlooks the possible connections between LE and LDL. Moreover, the existing LE approaches may assign some description degrees to invalid labels. To solve the above problems, we propose a novel method to learn an LDL model directly from the logical label, which unifies LE and LDL into a joint model, and avoids the drawbacks of the previous LE methods. Extensive experiments on various datasets prove that the proposed approach can construct a reliable LDL model directly from the logical label, and produce more accurate label distribution than the state-of-the-art LE methods.


翻译:标签分布学习 (LDL) 是预测一个样本的标签描述度(a.k.a.标签分布) 的有效方法。 然而, 给培训样本的标签分布(LD) 说明性(LD) 极为昂贵。 因此, 最近的研究往往首先使用标签强化(LE) 来产生逻辑标签的估计分布, 然后在回收标签分布上应用外部LDL算法来预测看不见样本的标签分布。 但是,这种渐进式的方法忽略了 LE 和 LDL 之间的可能联系。 此外, 现有的 LE 方法可能给无效标签指定一些描述度。 为了解决上述问题, 我们提出了一个新颖的方法, 直接从逻辑标签中学习LE和LDL 模式, 将LE 统一成一个联合模型, 避免先前 LE 方法的缺陷。 对各种数据集进行广泛的实验证明, 拟议的方法可以直接从逻辑标签中建立可靠的LDL模式, 并产生比最先进的LE方法更精确的标签分布。</s>

0
下载
关闭预览

相关内容

不可错过!《机器学习100讲》课程,UBC Mark Schmidt讲授
专知会员服务
74+阅读 · 2022年6月28日
机器学习损失函数概述,Loss Functions in Machine Learning
专知会员服务
83+阅读 · 2022年3月19日
因果图,Causal Graphs,52页ppt
专知会员服务
248+阅读 · 2020年4月19日
强化学习最新教程,17页pdf
专知会员服务
177+阅读 · 2019年10月11日
[综述]深度学习下的场景文本检测与识别
专知会员服务
78+阅读 · 2019年10月10日
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
逆强化学习-学习人先验的动机
CreateAMind
16+阅读 · 2019年1月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
2+阅读 · 2008年12月31日
Arxiv
0+阅读 · 2023年5月3日
Arxiv
14+阅读 · 2022年5月6日
Arxiv
12+阅读 · 2022年4月12日
Arxiv
38+阅读 · 2021年8月31日
VIP会员
相关VIP内容
不可错过!《机器学习100讲》课程,UBC Mark Schmidt讲授
专知会员服务
74+阅读 · 2022年6月28日
机器学习损失函数概述,Loss Functions in Machine Learning
专知会员服务
83+阅读 · 2022年3月19日
因果图,Causal Graphs,52页ppt
专知会员服务
248+阅读 · 2020年4月19日
强化学习最新教程,17页pdf
专知会员服务
177+阅读 · 2019年10月11日
[综述]深度学习下的场景文本检测与识别
专知会员服务
78+阅读 · 2019年10月10日
相关资讯
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
逆强化学习-学习人先验的动机
CreateAMind
16+阅读 · 2019年1月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
2+阅读 · 2008年12月31日
Top
微信扫码咨询专知VIP会员