We introduce federated marginal personalization (FMP), a novel method for continuously updating personalized neural network language models (NNLMs) on private devices using federated learning (FL). Instead of fine-tuning the parameters of NNLMs on personal data, FMP regularly estimates global and personalized marginal distributions of words, and adjusts the probabilities from NNLMs by an adaptation factor that is specific to each word. Our presented approach can overcome the limitations of federated fine-tuning and efficiently learn personalized NNLMs on devices. We study the application of FMP on second-pass ASR rescoring tasks. Experiments on two speech evaluation datasets show modest word error rate (WER) reductions. We also demonstrate that FMP could offer reasonable privacy with only a negligible cost in speech recognition accuracy.
翻译:我们引入了联邦边际个人化(FMP),这是利用联合学习(FL)不断更新私人设备上个人化神经网络语言模型(NNLMs)的新方法。 FMP没有微调个人化神经网络语言模型(NNLMs)对个人数据参数的参数,而是定期估算全球和个性化边际语言分布,并根据每个单词的特异性因子调整NNLM的概率。我们提出的方法可以克服在设备上对个人化神经网络语言模型(NNNLMs)进行联合微调的局限性,并有效学习个人化的NNLMs。我们研究了FMP在二流 ASR重新校准任务中的应用情况。对两个语音评价数据集的实验显示,单词错误率(WER)下降幅度不大。我们还表明,FMP可以提供合理的隐私,在语音识别精确度方面成本微不足道。