We introduce the use of the Zig-Zag sampler to the problem of sampling conditional diffusion processes (diffusion bridges). The Zig-Zag sampler is a rejection-free sampling scheme based on a non-reversible continuous piecewise deterministic Markov process. Similar to the L\'evy-Ciesielski construction of a Brownian motion, we expand the diffusion path in a truncated Faber-Schauder basis. The coefficients within the basis are sampled using a Zig-Zag sampler. A key innovation is the use of the fully local Algorithm for the Zig-Zag sampler that allows to exploit the sparsity structure implied by the dependency graph of the coefficients and by the subsampling technique to reduce the complexity of the algorithm. We illustrate the performance of the proposed methods in a number of examples.
翻译:我们采用Zig-Zag取样器来取样有条件扩散过程(扩散桥)的取样问题。Zig-Zag取样器是一种无拒绝采样办法,其基础是不可逆的连续片断式确定性Markov过程。与L'evy-Ciesielski建造布朗运动类似,我们以短速Faber-Schauder为基础扩大扩散路径。基准中的系数使用Zig-Zag采样器进行取样。一个关键的创新是,Zig-Zag采样器使用完全本地的Algorithm,从而能够利用系数依赖性图和子取样技术所隐含的宽度结构,以降低算法的复杂性。我们用几个例子来说明拟议方法的绩效。