We study deterministic and randomized streaming algorithms for word problems of finitely generated groups. For finitely generated linear groups, metabelian groups and free solvable groups we show the existence of randomized streaming algorithms with logarithmic space complexity for their word problems. We also show that the class of finitely generated groups with a logspace randomized streaming algorithm for the word problem is closed under several group theoretical constructions: finite extensions, graph products and wreath products by free abelian groups. We contrast these results with several lower bound. An example of a finitely presented group, where the word problem has only a linear space randomized streaming algorithm, is Thompson's group $F$. Finally, randomized streaming algorithms for subgroup membership problems in free groups and direct products of free groups are studied.
翻译:暂无翻译