Purpose: Mitral valve repair is a complex minimally invasive surgery of the heart valve. In this context, suture detection from endoscopic images is a highly relevant task that provides quantitative information to analyse suturing patterns, assess prosthetic configurations and produce augmented reality visualisations. Facial or anatomical landmark detection tasks typically contain a fixed number of landmarks, and use regression or fixed heatmap-based approaches to localize the landmarks. However in endoscopy, there are a varying number of sutures in every image, and the sutures may occur at any location in the annulus, as they are not semantically unique. Method: In this work, we formulate the suture detection task as a multi-instance deep heatmap regression problem, to identify entry and exit points of sutures. We extend our previous work, and introduce the novel use of a 2D Gaussian layer followed by a differentiable 2D spatial Soft-Argmax layer to function as a local non-maximum suppression. Results: We present extensive experiments with multiple heatmap distribution functions and two variants of the proposed model. In the intra-operative domain, Variant 1 showed a mean F1 of +0.0422 over the baseline. Similarly, in the simulator domain, Variant 1 showed a mean F1 of +0.0865 over the baseline. Conclusion: The proposed model shows an improvement over the baseline in the intra-operative and the simulator domains. The data is made publicly available within the scope of the MICCAI AdaptOR2021 Challenge https://adaptor2021.github.io/, and the code at https://github.com/Cardio-AI/suture-detection-pytorch/. DOI:10.1007/s11548-021-02523-w. The link to the open access article can be found here: https://link.springer.com/article/10.1007%2Fs11548-021-02523-w


翻译:目的 : Mital48 阀门修理是心脏阀门的复杂、 最小侵入性手术。 在这种情况下, 直肠图象的缝合检测是一个高度相关的任务, 提供定量信息, 分析脉冲模式, 评估假肢配置, 并产生增强的现实视觉化。 畸形或解剖标志性检测任务通常包含固定的地标数, 并使用回归或固定的基于热映射的方法将地标本地化。 但是在内骨镜检查中, 每张图像都有不同数量的线条纹2020, 而在废墟中的任何地点都可能出现缝合。 因为他们不是语言特异的。 方法 : 在这项工作中, 我们将线线性检测任务设计任务设计为多因子深热映射回归问题, 确定图示的出点。 我们扩展了以前的工作, 并引入了 2D 高斯图解层的新型使用, 代号: 2D 空间- 软- 硫化- 度/ 硫化图层可以作为本地非最大抑制功能 。 结果: 我们展示了多个实验, 基础域域域域域域域域域域域域分配功能的模型, 。

0
下载
关闭预览

相关内容

超文本传输安全协议是超文本传输协议和 SSL/TLS 的组合,用以提供加密通讯及对网络服务器身份的鉴定。
专知会员服务
32+阅读 · 2021年6月12日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
41+阅读 · 2019年10月9日
计算机 | CCF推荐期刊专刊信息5条
Call4Papers
3+阅读 · 2019年4月10日
人工智能 | 国际会议信息6条
Call4Papers
5+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
计算机类 | LICS 2019等国际会议信息7条
Call4Papers
3+阅读 · 2018年12月17日
计算机 | CCF推荐会议信息10条
Call4Papers
5+阅读 · 2018年10月18日
CCF B类期刊IPM专刊截稿信息1条
Call4Papers
3+阅读 · 2018年10月11日
【NIPS2018】接收论文列表
专知
5+阅读 · 2018年9月10日
计算机视觉的不同任务
专知
5+阅读 · 2018年8月27日
人工智能 | 国际会议截稿信息9条
Call4Papers
4+阅读 · 2018年3月13日
计算机视觉近一年进展综述
机器学习研究会
9+阅读 · 2017年11月25日
Arxiv
5+阅读 · 2021年4月21日
Arxiv
5+阅读 · 2020年8月18日
VIP会员
相关VIP内容
专知会员服务
32+阅读 · 2021年6月12日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
41+阅读 · 2019年10月9日
相关资讯
计算机 | CCF推荐期刊专刊信息5条
Call4Papers
3+阅读 · 2019年4月10日
人工智能 | 国际会议信息6条
Call4Papers
5+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
计算机类 | LICS 2019等国际会议信息7条
Call4Papers
3+阅读 · 2018年12月17日
计算机 | CCF推荐会议信息10条
Call4Papers
5+阅读 · 2018年10月18日
CCF B类期刊IPM专刊截稿信息1条
Call4Papers
3+阅读 · 2018年10月11日
【NIPS2018】接收论文列表
专知
5+阅读 · 2018年9月10日
计算机视觉的不同任务
专知
5+阅读 · 2018年8月27日
人工智能 | 国际会议截稿信息9条
Call4Papers
4+阅读 · 2018年3月13日
计算机视觉近一年进展综述
机器学习研究会
9+阅读 · 2017年11月25日
Top
微信扫码咨询专知VIP会员