Purpose: Mitral valve repair is a complex minimally invasive surgery of the heart valve. In this context, suture detection from endoscopic images is a highly relevant task that provides quantitative information to analyse suturing patterns, assess prosthetic configurations and produce augmented reality visualisations. Facial or anatomical landmark detection tasks typically contain a fixed number of landmarks, and use regression or fixed heatmap-based approaches to localize the landmarks. However in endoscopy, there are a varying number of sutures in every image, and the sutures may occur at any location in the annulus, as they are not semantically unique. Method: In this work, we formulate the suture detection task as a multi-instance deep heatmap regression problem, to identify entry and exit points of sutures. We extend our previous work, and introduce the novel use of a 2D Gaussian layer followed by a differentiable 2D spatial Soft-Argmax layer to function as a local non-maximum suppression. Results: We present extensive experiments with multiple heatmap distribution functions and two variants of the proposed model. In the intra-operative domain, Variant 1 showed a mean F1 of +0.0422 over the baseline. Similarly, in the simulator domain, Variant 1 showed a mean F1 of +0.0865 over the baseline. Conclusion: The proposed model shows an improvement over the baseline in the intra-operative and the simulator domains. The data is made publicly available within the scope of the MICCAI AdaptOR2021 Challenge https://adaptor2021.github.io/, and the code at https://github.com/Cardio-AI/suture-detection-pytorch/. DOI:10.1007/s11548-021-02523-w. The link to the open access article can be found here: https://link.springer.com/article/10.1007%2Fs11548-021-02523-w
翻译:目的 : Mital48 阀门修理是心脏阀门的复杂、 最小侵入性手术。 在这种情况下, 直肠图象的缝合检测是一个高度相关的任务, 提供定量信息, 分析脉冲模式, 评估假肢配置, 并产生增强的现实视觉化。 畸形或解剖标志性检测任务通常包含固定的地标数, 并使用回归或固定的基于热映射的方法将地标本地化。 但是在内骨镜检查中, 每张图像都有不同数量的线条纹2020, 而在废墟中的任何地点都可能出现缝合。 因为他们不是语言特异的。 方法 : 在这项工作中, 我们将线线性检测任务设计任务设计为多因子深热映射回归问题, 确定图示的出点。 我们扩展了以前的工作, 并引入了 2D 高斯图解层的新型使用, 代号: 2D 空间- 软- 硫化- 度/ 硫化图层可以作为本地非最大抑制功能 。 结果: 我们展示了多个实验, 基础域域域域域域域域域域域域分配功能的模型, 。