The engineering design process (e.g., control and forecasting) relies on mathematical modeling, describing the underlying dynamic behavior. For complex dynamics behavior, modeling procedures, as well as models, can be intricated, which can make the design process cumbersome. Therefore, it is desirable to have a common model structure, which is also simple enough, for all nonlinear dynamics to enhance design processes. The simplest dynamical model -- one can think of -- is linear, but linear models are often not expressive enough to apprehend complex dynamics. In this work, we propose a modeling approach for nonlinear dynamics and discuss a common framework to model nonlinear dynamic processes, which is built upon a \emph{lifting-principle}. The preeminent idea of the principle is that smooth nonlinear systems can be written as quadratic systems in an appropriate lifted coordinate system without any approximation error. Hand-designing these coordinates is not straightforward. In this work, we utilize deep learning capabilities and discuss suitable neural network architectures to find such a coordinate system using data. We present innovative neural architectures and the corresponding objective criterion to achieve our goal. We illustrate the approach using data coming from applications in engineering and biology.
翻译:工程设计过程(例如,控制和预测)依赖于数学模型,描述潜在的动态行为。对于复杂的动态行为,建模程序以及模型,可以复杂,使设计过程繁琐。因此,最好有一个共同的模型结构,这个结构也足够简单,所有非线性动态都可以加强设计过程。最简单的动态模型 -- -- 人们可以想象 -- -- 是线性的,但线性模型往往不够清晰,无法捕捉复杂的动态。在这项工作中,我们提议一个非线性动态模型,讨论一个共同的框架来模拟非线性动态过程,这个框架是建立在\emph{lipping-principle}基础上的。原则的突出思想是,光滑的非线性系统可以写成四边系统,在适当的提升协调系统中,没有近似错误。手写这些坐标并非直截然。在这项工作中,我们利用深层次的学习能力和讨论适当的神经网络结构来寻找这样一个协调系统。我们提出了创新的神经结构以及相应的客观标准,以便实现我们的目标。我们从生物学中用数据来说明这个方法。