Pre-training trajectory embeddings is a fundamental and critical procedure in spatial-temporal trajectory mining, and is beneficial for a wide range of downstream tasks. The key for generating effective trajectory embeddings is to extract high-level travel semantics from trajectories, including movement patterns and travel purposes, with consideration of the trajectories' long-term spatial-temporal correlations. Despite the existing efforts, there are still major challenges in pre-training trajectory embeddings. First, commonly used generative pretext tasks are not suitable for extracting high-level semantics from trajectories. Second, existing data augmentation methods fit badly on trajectory datasets. Third, current encoder designs fail to fully incorporate long-term spatial-temporal correlations hidden in trajectories. To tackle these challenges, we propose a novel Contrastive Spatial-Temporal Trajectory Embedding (CSTTE) model for learning comprehensive trajectory embeddings. CSTTE adopts the contrastive learning framework so that its pretext task is robust to noise. A specially designed data augmentation method for trajectories is coupled with the contrastive pretext task to preserve the high-level travel semantics. We also build an efficient spatial-temporal trajectory encoder to efficiently and comprehensively model the long-term spatial-temporal correlations in trajectories. Extensive experiments on two downstream tasks and three real-world datasets prove the superiority of our model compared with the existing trajectory embedding methods.
翻译:培训前的轨迹嵌入是空间-时空轨迹采矿中的一个基本和关键程序,有利于一系列广泛的下游任务。产生有效轨迹嵌入的关键在于从轨迹中提取高层次的旅行语义,包括运动模式和旅行目的,同时考虑到轨迹的长期空间-时空关系。尽管做出了现有努力,但培训前的轨迹嵌入方面仍然存在重大挑战。首先,常用的基因化借口任务不适合从轨迹中提取高层次的语义。第二,现有的数据增强方法不适合轨迹数据集。第三,当前的编码设计未能完全纳入轨迹中隐藏的长期空间-时空关系。为了应对这些挑战,我们提议采用新的对比性空间-时空轨迹嵌入模型(CSTTE)模型,学习全面的轨迹嵌入。科技中心采用对比性学习框架,使其与噪音相匹配。为轨迹轨迹的轨迹强化方法是特别设计的当前数据增强方法。第三,当前的编码设计在轨迹轨迹轨迹中无法完全纳入长期空间-时空际关系中长期的际关系。我们还利用了两种数据递增模型,在轨迹层中将高水平与高水平上建立。