Pre-training trajectory embeddings is a fundamental and critical procedure in spatial-temporal trajectory mining, and is beneficial for a wide range of downstream tasks. The key for generating effective trajectory embeddings is to extract high-level travel semantics from trajectories, including movement patterns and travel purposes, with consideration of the trajectories' long-term spatial-temporal correlations. Despite the existing efforts, there are still major challenges in pre-training trajectory embeddings. First, commonly used generative pretext tasks are not suitable for extracting high-level semantics from trajectories. Second, existing data augmentation methods fit badly on trajectory datasets. Third, current encoder designs fail to fully incorporate long-term spatial-temporal correlations hidden in trajectories. To tackle these challenges, we propose a novel Contrastive Spatial-Temporal Trajectory Embedding (CSTTE) model for learning comprehensive trajectory embeddings. CSTTE adopts the contrastive learning framework so that its pretext task is robust to noise. A specially designed data augmentation method for trajectories is coupled with the contrastive pretext task to preserve the high-level travel semantics. We also build an efficient spatial-temporal trajectory encoder to efficiently and comprehensively model the long-term spatial-temporal correlations in trajectories. Extensive experiments on two downstream tasks and three real-world datasets prove the superiority of our model compared with the existing trajectory embedding methods.


翻译:培训前的轨迹嵌入是空间-时空轨迹采矿中的一个基本和关键程序,有利于一系列广泛的下游任务。产生有效轨迹嵌入的关键在于从轨迹中提取高层次的旅行语义,包括运动模式和旅行目的,同时考虑到轨迹的长期空间-时空关系。尽管做出了现有努力,但培训前的轨迹嵌入方面仍然存在重大挑战。首先,常用的基因化借口任务不适合从轨迹中提取高层次的语义。第二,现有的数据增强方法不适合轨迹数据集。第三,当前的编码设计未能完全纳入轨迹中隐藏的长期空间-时空关系。为了应对这些挑战,我们提议采用新的对比性空间-时空轨迹嵌入模型(CSTTE)模型,学习全面的轨迹嵌入。科技中心采用对比性学习框架,使其与噪音相匹配。为轨迹轨迹的轨迹强化方法是特别设计的当前数据增强方法。第三,当前的编码设计在轨迹轨迹轨迹中无法完全纳入长期空间-时空际关系中长期的际关系。我们还利用了两种数据递增模型,在轨迹层中将高水平与高水平上建立。

0
下载
关闭预览

相关内容

专知会员服务
52+阅读 · 2020年11月3日
100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
164+阅读 · 2020年3月18日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
最新BERT相关论文清单,BERT-related Papers
专知会员服务
52+阅读 · 2019年9月29日
征稿 | International Joint Conference on Knowledge Graphs (IJCKG)
开放知识图谱
2+阅读 · 2022年5月20日
征稿 | CFP:Special Issue of NLP and KG(JCR Q2,IF2.67)
开放知识图谱
1+阅读 · 2022年4月4日
ACM TOMM Call for Papers
CCF多媒体专委会
2+阅读 · 2022年3月23日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium8
中国图象图形学学会CSIG
0+阅读 · 2021年11月16日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium4
中国图象图形学学会CSIG
0+阅读 · 2021年11月10日
会议交流 | IJCKG: International Joint Conference on Knowledge Graphs
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
国家自然科学基金
0+阅读 · 2016年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
Efficiently Embedding Dynamic Knowledge Graphs
Arxiv
14+阅读 · 2019年10月15日
VIP会员
相关资讯
征稿 | International Joint Conference on Knowledge Graphs (IJCKG)
开放知识图谱
2+阅读 · 2022年5月20日
征稿 | CFP:Special Issue of NLP and KG(JCR Q2,IF2.67)
开放知识图谱
1+阅读 · 2022年4月4日
ACM TOMM Call for Papers
CCF多媒体专委会
2+阅读 · 2022年3月23日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium8
中国图象图形学学会CSIG
0+阅读 · 2021年11月16日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium4
中国图象图形学学会CSIG
0+阅读 · 2021年11月10日
会议交流 | IJCKG: International Joint Conference on Knowledge Graphs
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
相关基金
国家自然科学基金
0+阅读 · 2016年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
Top
微信扫码咨询专知VIP会员