Recently, leveraging different channels to model social semantic information and using self-supervised learning tasks to boost recommendation performance has been proven to be a very promising work. However, how to deeply dig out the relationship between different channels and make full use of it while maintaining the uniqueness of each channel is a problem that has not been well studied and resolved in this field. Under such circumstances, this paper explores and verifies the deficiency of directly constructing contrastive learning tasks on different channels with practical experiments and proposes the scheme of interactive modeling and matching representation across different channels. This is the first attempt in the field of recommender systems, we believe the insight of this paper is inspirational to future self-supervised learning research based on multi-channel information. To solve this problem, we propose a cross-channel matching representation model based on attentive interaction, which realizes efficient modeling of the relationship between cross-channel information. Based on this, we also propose a hierarchical self-supervised learning model, which realizes two levels of self-supervised learning within and between channels, which improves the ability of self-supervised tasks to autonomously mine different levels of potential information. We have conducted abundant experiments, and various metrics on multiple public datasets show that the method proposed in this paper has a significant improvement compared with the state-of-the-art methods, no matter in the general or cold-start scenario. And in the experiment of model variant analysis, the benefits of the cross-channel matching representation model and the hierarchical self-supervised model proposed in this paper are also fully verified.


翻译:最近,利用不同渠道来模拟社会语义信息,并利用自我监督的学习任务来模拟社会语义信息,以及利用不同渠道来提升建议绩效,这证明是一项非常有希望的工作。然而,如何深入挖掘不同渠道之间的关系,并充分利用这种关系,同时保持每个渠道的独特性,是一个尚未在这一领域进行认真研究和解决的问题。在这种情况下,本文件探索并核实了不同渠道直接构建对比式学习任务的缺陷,并进行了实际实验,并提出了在不同渠道之间互动建模和匹配代表比例的方案。这是在推荐者系统领域首次尝试,我们认为本文件的洞察对今后基于多渠道信息进行自我监督的学习研究具有启迪作用。为了解决这一问题,我们提议了一个跨渠道匹配代表模式模式模式模式模式,以直接构建不同渠道的对比学习任务。基于此,我们还提议了一个等级的自监督式通用示范学习模式,该模式在内部和不同渠道之间实现了两个层次的自我监督式学习,这提高了自我监督的自我监督自我监督的自我代表能力,在多渠道基础上对自我监督的学习进行自我监督的学习研究研究研究研究研究研究。为了解决这个问题,我们用多层次的实验模式,在多层次的实验中,在多层次的实验中,我们用不同的模型中展示了各种的模型中,在多层次的模型中,我们所建的模型展示的模型中, 展示了这一模型中,我们用了大量的模型展示了这一模型的模型的模型的模型的模型的模型的模型的模型的模型的模型的模型的模型的模型的模型的模型的模型的模型的模型的模型的模型的模型,在了。

0
下载
关闭预览

相关内容

Linux导论,Introduction to Linux,96页ppt
专知会员服务
78+阅读 · 2020年7月26日
因果图,Causal Graphs,52页ppt
专知会员服务
246+阅读 · 2020年4月19日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
59+阅读 · 2019年10月17日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
征稿 | International Joint Conference on Knowledge Graphs (IJCKG)
开放知识图谱
2+阅读 · 2022年5月20日
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium8
中国图象图形学学会CSIG
0+阅读 · 2021年11月16日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium5
中国图象图形学学会CSIG
1+阅读 · 2021年11月11日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium3
中国图象图形学学会CSIG
0+阅读 · 2021年11月9日
会议交流 | IJCKG: International Joint Conference on Knowledge Graphs
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
VIP会员
相关资讯
征稿 | International Joint Conference on Knowledge Graphs (IJCKG)
开放知识图谱
2+阅读 · 2022年5月20日
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium8
中国图象图形学学会CSIG
0+阅读 · 2021年11月16日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium5
中国图象图形学学会CSIG
1+阅读 · 2021年11月11日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium3
中国图象图形学学会CSIG
0+阅读 · 2021年11月9日
会议交流 | IJCKG: International Joint Conference on Knowledge Graphs
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Top
微信扫码咨询专知VIP会员