Image demosaicking and denoising are the two key fundamental steps in digital camera pipelines, aiming to reconstruct clean color images from noisy luminance readings. In this paper, we propose and study Wild-JDD, a novel learning framework for joint demosaicking and denoising in the wild. In contrast to previous works which generally assume the ground truth of training data is a perfect reflection of the reality, we consider here the more common imperfect case of ground truth uncertainty in the wild. We first illustrate its manifestation as various kinds of artifacts including zipper effect, color moire and residual noise. Then we formulate a two-stage data degradation process to capture such ground truth uncertainty, where a conjugate prior distribution is imposed upon a base distribution. After that, we derive an evidence lower bound (ELBO) loss to train a neural network that approximates the parameters of the conjugate prior distribution conditioned on the degraded input. Finally, to further enhance the performance for out-of-distribution input, we design a simple but effective fine-tuning strategy by taking the input as a weakly informative prior. Taking into account ground truth uncertainty, Wild-JDD enjoys good interpretability during optimization. Extensive experiments validate that it outperforms state-of-the-art schemes on joint demosaicking and denoising tasks on both synthetic and realistic raw datasets.
翻译:图像的演示和分解是数字相机管道的两个关键基本步骤,目的是从噪音的亮度读数中重建清洁的彩色图像。 在本文中,我们提出并研究野生联合演示和分解的新型学习框架“野生JDD ” 。 与以前通常认为培训数据是地面真实反映现实的工程相比,我们在这里认为野生的地面真实不确定性是比较常见的不完善案例。 我们首先将其表现为各种艺术品, 包括拉链效应、 彩色和剩余噪音。 然后我们制定一个两阶段的数据降解进程, 以捕捉地面的不确定性, 将基分布强制地上之前的同质分发。 之后, 我们得出一个较低约束性的证据( ELBO) 损失来训练一个神经网络, 该网络与先前的混凝土分配参数相近, 以变质输入为条件。 最后, 我们设计了一个简单但有效的微调整战略, 将投入作为先前信息薄弱的输入。 考虑地面真实性不确定性, 联合化的合成计划中, 野生JDDD将良好地模拟 模拟 模拟 模拟 。