In this paper we present a method for updating robotic state belief through contact with uncertain surfaces and apply this update to a Kalman filter for more accurate state estimation. Examining how guard surface uncertainty affects the time spent in each mode, we derive a guard saltation matrix - which maps perturbations prior to hybrid events to perturbations after - accounting for additional variation in the resulting state. Additionally, we propose the use of parameterized reset functions - capturing how unknown parameters change how states are mapped from one mode to the next - the Jacobian of which accounts for the additional uncertainty in the resulting state. The accuracy of these mappings is shown by simulating sampled distributions through uncertain transition events and comparing the resulting covariances. Finally, we integrate these additional terms into the "uncertainty aware Salted Kalman Filter", uaSKF, and show a peak reduction in average estimation error by 24-60% on a variety of test conditions and systems.
翻译:在本文中,我们提出了一个通过与不确定表面接触更新机器人状态信念的方法,并将这一更新应用到卡尔曼过滤器,以便更准确地进行状态估计。我们研究了防守表面的不确定性如何影响每种模式所花费的时间。我们得出了一个防腐盐矩阵,其中绘制了在混合事件之前的扰动图,以考虑到由此产生的状态的更多变异。此外,我们提议使用参数重设功能 — 捕捉未知参数如何改变国家如何从一种模式向另一种模式的映射—— Jacobian 记录了由此产生的状态的额外不确定性。这些绘图的准确性表现为通过不确定的过渡事件模拟抽样分布,并比较由此产生的共变式。最后,我们将这些附加术语纳入“不确定知道的卡尔曼过滤器”, uaSKF, 并显示在各种测试条件和系统中平均估计误差最高减少24-60%。