In parallel with the rapid adoption of Artificial Intelligence (AI) empowered by advances in AI research, there have been growing awareness and concerns of data privacy. Recent significant developments in the data regulation landscape have prompted a seismic shift in interest towards privacy-preserving AI. This has contributed to the popularity of Federated Learning (FL), the leading paradigm for the training of machine learning models on data silos in a privacy-preserving manner. In this survey, we explore the domain of Personalized FL (PFL) to address the fundamental challenges of FL on heterogeneous data, a universal characteristic inherent in all real-world datasets. We analyze the key motivations for PFL and present a unique taxonomy of PFL techniques categorized according to the key challenges and personalization strategies in PFL. We highlight their key ideas, challenges and opportunities and envision promising future trajectories of research towards new PFL architectural design, realistic PFL benchmarking, and trustworthy PFL approaches.
翻译:随着人工智能研究进展所增强的人工智能(AI)的迅速通过,对数据隐私的认识和关切也日益增强。数据监管格局的近期重大发展促使人们对保护隐私的兴趣发生地震性转变。这促使以隐私保护方式培训数据仓机学模型的主要模式Fal Learning(Fl)的受欢迎程度。在这次调查中,我们探索了个性化FL(PFL)的领域,以应对FL(FL)在各种数据方面的基本挑战,这是所有现实世界数据集中固有的一个普遍特征。我们分析了PLFL的主要动机,并介绍了根据PLF的关键挑战和个性化战略分类的PLF技术的独特分类分类。我们强调了他们的主要想法、挑战和机遇,并设想了未来对新的PLFL建筑设计、现实的PLF基准和可信赖的PFL方法进行研究的有希望的轨迹。