In this paper, we propose a novel ensembling technique for deep neural networks, which is able to drastically reduce the required memory compared to alternative approaches. In particular, we propose to extract multiple sub-networks from a single, untrained neural network by solving an end-to-end optimization task combining differentiable scaling over the original architecture, with multiple regularization terms favouring the diversity of the ensemble. Since our proposal aims to detect and extract sub-structures, we call it Structured Ensemble. On a large experimental evaluation, we show that our method can achieve higher or comparable accuracy to competing methods while requiring significantly less storage. In addition, we evaluate our ensembles in terms of predictive calibration and uncertainty, showing they compare favourably with the state-of-the-art. Finally, we draw a link with the continual learning literature, and we propose a modification of our framework to handle continuous streams of tasks with a sub-linear memory cost. We compare with a number of alternative strategies to mitigate catastrophic forgetting, highlighting advantages in terms of average accuracy and memory.


翻译:在本文中,我们建议对深神经网络采用新颖的组合技术,这种技术能够与替代方法相比大幅减少所需的记忆。特别是,我们建议通过解决一个终端到终端的优化任务,把对原始结构的不同规模结合起来,同时采用多种正规化条件,有利于共同体的多样性。由于我们的提案旨在探测和提取子结构,我们称之为结构化组合。在一次大型实验评估中,我们表明我们的方法可以达到与竞争性方法的更高或可比的精确度,同时需要的储存量要少得多得多。此外,我们从预测性校准和不确定性的角度来评估我们的组合,表明它们与最新技术相比是比较的。最后,我们提出与持续学习文献的联系,我们建议修改我们的框架,以子线性记忆成本处理连续的任务流。我们比较了一些替代战略,以缓解灾难性的遗忘,强调平均精确性和记忆的优势。

0
下载
关闭预览

相关内容

专知会员服务
45+阅读 · 2020年10月31日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
60+阅读 · 2019年10月17日
开源书:PyTorch深度学习起步
专知会员服务
51+阅读 · 2019年10月11日
强化学习最新教程,17页pdf
专知会员服务
177+阅读 · 2019年10月11日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
41+阅读 · 2019年10月9日
强化学习三篇论文 避免遗忘等
CreateAMind
19+阅读 · 2019年5月24日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
逆强化学习-学习人先验的动机
CreateAMind
16+阅读 · 2019年1月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
18+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
RL 真经
CreateAMind
5+阅读 · 2018年12月28日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
强化学习族谱
CreateAMind
26+阅读 · 2017年8月2日
VIP会员
相关资讯
强化学习三篇论文 避免遗忘等
CreateAMind
19+阅读 · 2019年5月24日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
逆强化学习-学习人先验的动机
CreateAMind
16+阅读 · 2019年1月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
18+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
RL 真经
CreateAMind
5+阅读 · 2018年12月28日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
强化学习族谱
CreateAMind
26+阅读 · 2017年8月2日
Top
微信扫码咨询专知VIP会员