Currently, the world seeks to find appropriate mitigation techniques to control and prevent the spread of the new SARS-CoV-2. In our paper herein, we present a peculiar Multi-Task Learning framework that jointly predicts the effect of SARS-CoV-2 as well as Personal-Protective-Equipment consumption in Community Health Centres for a given populace. Predicting the effect of the virus (SARS-CoV-2), via studies and analyses, enables us to understand the nature of SARS-CoV- 2 with reference to factors that promote its growth and spread. Therefore, these foster widespread awareness; and the populace can become more proactive and cautious so as to mitigate the spread of Corona Virus Disease 2019 (COVID- 19). Furthermore, understanding and predicting the demand for Personal Protective Equipment promotes the efficiency and safety of healthcare workers in Community Health Centres. Owing to the novel nature and strains of SARS-CoV-2, relatively few literature and research exist in this regard. These existing literature have attempted to solve the problem statement(s) using either Agent-based Models, Machine Learning Models, or Mathematical Models. In view of this, our work herein adds to existing literature via modeling our problem statements as Multi- Task Learning problems. Results from our research indicate that government actions and human factors are the most significant determinants that influence the spread of SARS-CoV-2.
翻译:目前,世界正在寻求适当的缓解技术,以控制和防止新的SARS-CoV-2的传播。我们在本文件中提出了一个独特的多任务学习框架,共同预测SARS-CoV-2以及社区保健中心个人防护设备消费对特定人群的影响。通过研究和分析预测病毒(SARS-CoV-2)的影响(SARS-CoV-2),使我们能够了解SARS-CoV-2的性质,了解促进其增长和传播的因素。因此,这些可以促进广泛的认识;民众可以变得更加积极主动和谨慎,以减缓Coronna病毒病(2019年COVID-19年)的蔓延。此外,了解和预测个人防护设备需求提高了社区保健中心保健工作者的效率和安全性。由于SARS-CoV-2的新颖性质和紧张,这方面的文献和研究相对较少。这些文献试图利用基于代理模型、机器学习模型或数学模型对问题进行解析;从我们目前的研究模型和数学模型中可以看出我们目前通过多种研究模型进行的研究,从我们的研究中发现人类的决定性因素。