With the rapid spread of COVID-19 worldwide, viral genomic data is available in the order of millions of sequences on public databases such as GISAID. This \emph{Big Data} creates a unique opportunity for analysis towards the research of effective vaccine development for current pandemics, and avoiding or mitigating future pandemics. One piece of information that comes with every such viral sequence is the geographical location where it was collected -- the patterns found between viral variants and geographic location surely being an important part of this analysis. One major challenge that researchers face is processing such huge, highly dimensional data to get useful insights as quickly as possible. Most of the existing methods face scalability issues when dealing with the magnitude of such data. In this paper, we propose an algorithm that first computes a numerical representation of the spike protein sequence of SARS-CoV-2 using $k$-mers substrings) and then uses a deep learning-based model to classify the sequences in terms of geographical location. We show that our proposed model significantly outperforms the baselines. We also show the importance of different amino acids in the spike sequences by computing the information gain corresponding to the true class labels.
翻译:随着COVID-19在世界范围内的迅速传播,在诸如GISAID等公共数据库上,可以提供几百万个序列的病毒基因组数据。此 \ emph{Big Data} 为研究当前流行病的有效疫苗开发以及避免或减轻未来的流行病提供了一个独特的分析机会。 随每种病毒序列而来的一个信息是其收集的地理位置 -- -- 病毒变异和地理位置之间的模式肯定是这一分析的一个重要部分。 研究人员面临的一个重大挑战是处理如此巨大、高度维度的数据,以便尽快获得有用的洞察。 大多数现有方法在处理这类数据的规模时都面临可缩放性问题。 在本文中,我们提出了一个算法,首先用$k$-mers 子字符串计算SARS-COV-2的峰值蛋白序列的数字表示,然后用一个深层次的学习模型来根据地理位置对序列进行分类。我们提议的模型大大超出基线。 我们还通过计算真实的标签来显示不同氨基酸在峰值序列中的重要性。