The application of secure multiparty computation (MPC) in machine learning, especially privacy-preserving neural network training, has attracted tremendous attention from the research community in recent years. MPC enables several data owners to jointly train a neural network while preserving the data privacy of each participant. However, most of the previous works focus on semi-honest threat model that cannot withstand fraudulent messages sent by malicious participants. In this paper, we propose an approach for constructing efficient $n$-party protocols for secure neural network training that can provide security for all honest participants even when a majority of the parties are malicious. Compared to the other designs that provide semi-honest security in a dishonest majority setting, our actively secure neural network training incurs affordable efficiency overheads of around 2X and 2.7X in LAN and WAN settings, respectively. Besides, we propose a scheme to allow additive shares defined over an integer ring $\mathbb{Z}_N$ to be securely converted to additive shares over a finite field $\mathbb{Z}_Q$, which may be of independent interest. Such conversion scheme is essential in securely and correctly converting shared Beaver triples defined over an integer ring generated in the preprocessing phase to triples defined over a field to be used in the calculation in the online phase.


翻译:在机器学习中应用安全的多党计算(MPC),特别是隐私保护神经网络培训,近年来引起了研究界的极大关注。MPC使若干数据所有人能够联合培训神经网络,同时保护每个参与者的数据隐私。然而,以往的大部分工作侧重于半诚实的威胁模式,这种模式无法抵御恶意参与者发送的欺诈信息。在本文件中,我们提出一种方法,用于建造高效的美元方协议,用于安全神经网络培训,这种协议即使大多数当事方是恶意的,也能为所有诚实参与者提供安全。与在不诚实多数情况下提供半诚实安全的其他设计相比,我们积极安全的神经网络培训在局域和广域网环境中分别产生了约2X和2.7X的负担得起的效率管理,此外,我们提出一个计划,允许将一个整数为$\mathbb ⁇ N$的复合股份安全地转换成一个有限字段$\mathbb ⁇ $的添加份额,这可能具有独立利益。这种转换计划对于安全而正确地将共同的Beaver 3级转换成一个在使用前阶段确定的连续三连环计算中,在预先的实地中,必须由安全地和正确地将一个固定地和正确转换成一个固定的连续的连续的三阶段,在使用。

0
下载
关闭预览

相关内容

神经网络(Neural Networks)是世界上三个最古老的神经建模学会的档案期刊:国际神经网络学会(INNS)、欧洲神经网络学会(ENNS)和日本神经网络学会(JNNS)。神经网络提供了一个论坛,以发展和培育一个国际社会的学者和实践者感兴趣的所有方面的神经网络和相关方法的计算智能。神经网络欢迎高质量论文的提交,有助于全面的神经网络研究,从行为和大脑建模,学习算法,通过数学和计算分析,系统的工程和技术应用,大量使用神经网络的概念和技术。这一独特而广泛的范围促进了生物和技术研究之间的思想交流,并有助于促进对生物启发的计算智能感兴趣的跨学科社区的发展。因此,神经网络编委会代表的专家领域包括心理学,神经生物学,计算机科学,工程,数学,物理。该杂志发表文章、信件和评论以及给编辑的信件、社论、时事、软件调查和专利信息。文章发表在五个部分之一:认知科学,神经科学,学习系统,数学和计算分析、工程和应用。 官网地址:http://dblp.uni-trier.de/db/journals/nn/
Google-EfficientNet v2来了!更快,更小,更强!
专知会员服务
19+阅读 · 2021年4月4日
【干货书】机器学习速查手册,135页pdf
专知会员服务
126+阅读 · 2020年11月20日
【Google】平滑对抗训练,Smooth Adversarial Training
专知会员服务
49+阅读 · 2020年7月4日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
104+阅读 · 2019年10月9日
最新BERT相关论文清单,BERT-related Papers
专知会员服务
53+阅读 · 2019年9月29日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
【TED】生命中的每一年的智慧
英语演讲视频每日一推
9+阅读 · 2019年1月29日
逆强化学习-学习人先验的动机
CreateAMind
16+阅读 · 2019年1月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
神经网络学习率设置
机器学习研究会
4+阅读 · 2018年3月3日
可解释的CNN
CreateAMind
17+阅读 · 2017年10月5日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Arxiv
0+阅读 · 2021年4月3日
VIP会员
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
【TED】生命中的每一年的智慧
英语演讲视频每日一推
9+阅读 · 2019年1月29日
逆强化学习-学习人先验的动机
CreateAMind
16+阅读 · 2019年1月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
神经网络学习率设置
机器学习研究会
4+阅读 · 2018年3月3日
可解释的CNN
CreateAMind
17+阅读 · 2017年10月5日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Top
微信扫码咨询专知VIP会员