We present a partitioned neural network-based framework for learning of fluid-structure interaction (FSI) problems. We decompose the simulation domain into two smaller sub-domains, i.e., fluid and solid domains, and incorporate an independent neural network for each. A library is used to couple the two networks which takes care of boundary data communication, data mapping and equation coupling. Simulation data are used for training of the both neural networks. We use a combination of convolutional and recurrent neural networks (CNN and RNN) to account for both spatial and temporal connectivity. A quasi-Newton method is used to accelerate the FSI coupling convergence. We observe a very good agreement between the results of the presented framework and the classical numerical methods for simulation of 1d fluid flow inside an elastic tube. This work is a preliminary step for using neural networks to speed-up the FSI coupling convergence by providing an accurate initial guess in each time step for classical numerical solvers
翻译:我们为学习流体结构互动(FSI)问题提出了一个分隔的神经网络框架。我们将模拟域分解成两个较小的次域,即流体和固态域,并纳入每个独立的神经网络。一个图书馆用来将处理边界数据通信、数据绘图和方程组合的两个网络对齐。模拟数据用于培训两个神经网络。我们使用一个结合和经常性神经网络(CNN和RNNN)的组合来计算空间和时间连接。我们使用准纽顿方法加速FSI的结合。我们观察到,在所介绍的框架的结果和模拟弹性管内1个流流的典型数字方法之间达成了非常良好的一致。这项工作是使用神经网络加速FSI组合的初步步骤,为经典数字解答器提供准确的初始猜算。