We show that any sequence of well-behaved (e.g. bounded and non-constant) real-valued functions of $n$ boolean variables $\{f_n\}$ admits a sequence of coordinates whose $L^1$ influence under the $p$-biased distribution, for any $p\in(0,1)$, is $\Omega(\text{var}(f_n) \frac{\ln n}{n})$.
翻译:暂无翻译