This paper enhances the feedback linearization controller for multirotors with a learned acceleration error model and a thrust input delay mitigation model. Feedback linearization controllers are theoretically appealing but their performance suffers on real systems, where the true system does not match the known system model. We take a step in reducing these robustness issues by learning an acceleration error model, applying this model in the position controller, and further propagating it forward to the attitude controller. We show how this approach improves performance over the standard feedback linearization controller in the presence of unmodeled dynamics and repeatable external disturbances in both simulation and hardware experiments. We also show that our thrust control input delay model improves the step response on hardware systems.
翻译:本文通过学习加速误差模型和推力输入延迟减慢模型,加强多色器的反馈线性控制器。 反馈线性控制器在理论上具有吸引力, 但其性能在真实系统与已知系统模型不匹配的系统上受到影响。 我们通过学习加速误差模型, 在定位控制器中应用这一模型, 并将其进一步推广到姿态控制器, 在模拟和硬件实验中, 我们为减少这些稳健性问题迈出了一步。 我们展示了这个方法如何在模拟和硬件实验中, 出现未经改造的动态和可重复的外部扰动的情况下, 改进标准反馈线性控制器的性能。 我们还表明, 我们的推力控制延迟模型提高了硬件系统的步态反应。