We investigate how to exploit structural similarities of an individual's potential outcomes (POs) under different treatments to obtain better estimates of conditional average treatment effects in finite samples. Especially when it is unknown whether a treatment has an effect at all, it is natural to hypothesize that the POs are similar - yet, some existing strategies for treatment effect estimation employ regularization schemes that implicitly encourage heterogeneity even when it does not exist and fail to fully make use of shared structure. In this paper, we investigate and compare three end-to-end learning strategies to overcome this problem - based on regularization, reparametrization and a flexible multi-task architecture - each encoding inductive bias favoring shared behavior across POs. To build understanding of their relative strengths, we implement all strategies using neural networks and conduct a wide range of semi-synthetic experiments. We observe that all three approaches can lead to substantial improvements upon numerous baselines and gain insight into performance differences across various experimental settings.
翻译:我们调查如何利用不同处理方法下个人潜在结果的结构相似性,以更好地估计有限样本中的有条件平均治疗效果。 特别是当不知道某种治疗是否具有任何效果时,自然地假设参与方案相似----然而,一些现有的治疗效果估计战略采用正规化计划,暗含鼓励异质性,即使不存在这种异质性,而且未能充分利用共享结构。我们在本文件中调查并比较了三种端对端学习战略,以克服这一问题――基于正规化、再平衡和灵活的多任务结构――每一种输入的偏向偏向于参与方案之间共同行为的编码。为了了解它们的相对实力,我们使用神经网络实施所有战略,并进行广泛的半合成实验。我们发现,所有三种方法都可以在众多基线基础上带来重大改进,并深入了解不同实验环境的业绩差异。