We propose a structure-preserving model-reduction methodology for large-scale dynamic networks with tightly-connected components. First, the coherent groups are identified by a spectral clustering algorithm on the graph Laplacian matrix that models the network feedback. Then, a reduced network is built, where each node represents the aggregate dynamics of each coherent group, and the reduced network captures the dynamic coupling between the groups. We provide an upper bound on the approximation error when the network graph is randomly generated from a weight stochastic block model. Finally, numerical experiments align with and validate our theoretical findings.
翻译:我们为具有紧密连接组件的大型动态网络提出了一个结构保持模式式削减方法。 首先,通过在模拟网络反馈的Laplacian矩阵图上的光谱群集算法来识别连贯的集团。 然后,建立了一个缩小的网络,其中每个节点代表每个连贯的集团的总动态,而减少的网络则捕捉到各集团之间的动态组合。当网络图是随机从重量随机生成时,我们提供了近似误差的上限。最后,数字实验与我们的理论结论一致并验证。