A major obstacle to the realization of novel inorganic materials with desirable properties is the inability to perform efficient optimization across both materials properties and synthesis of those materials. In this work, we propose a reinforcement learning (RL) approach to inverse inorganic materials design, which can identify promising compounds with specified properties and synthesizability constraints. Our model learns chemical guidelines such as charge and electronegativity neutrality while maintaining chemical diversity and uniqueness. We demonstrate a multi-objective RL approach, which can generate novel compounds with targeted materials properties including formation energy and bulk/shear modulus alongside a lower sintering temperature synthesis objectives. Using this approach, the model can predict promising compounds of interest, while suggesting an optimized chemical design space for inorganic materials discovery.
翻译:在实现具有适当特性的新无机材料方面的一个主要障碍是无法对这些材料的特性和合成进行高效优化。在这项工作中,我们建议对反无机材料设计采取强化学习(RL)办法,该办法可以确定有特定特性和可合成性制约的有前途的化合物。我们的模型学习了充电和电子中性等化学准则,同时保持化学多样性和独特性。我们展示了多目标RL办法,这种办法可以产生有目标材料特性的新化合物,包括形成能量和散装/听式材料,同时实现较低的交互温度合成目标。使用这种方法,模型可以预测有希望的化合物,同时建议为无机材料的发现提供最佳的化学设计空间。
Material Design Guidelines