Generics express generalizations about the world (e.g., "birds can fly"). However, they are not universally true -- while sparrows and penguins are both birds, only sparrows can fly and penguins cannot. Commonsense knowledge bases, which are used extensively in many NLP tasks as a source of world-knowledge, can often encode generic knowledge but, by-design, cannot encode such exceptions. Therefore, it is crucial to realize the specific instances when a generic statement is true or false. In this work, we present a novel framework to generate pragmatically relevant true and false instances of a generic. We use pre-trained language models, constraining the generation based on insights from linguistic theory, and produce ${\sim}20k$ exemplars for ${\sim}650$ generics. Our system outperforms few-shot generation from GPT-3 (by 12.5 precision points) and our analysis highlights the importance of constrained decoding for this task and the implications of generics exemplars for language inference tasks.
翻译:通用的常规对世界的概括性(例如,“鸟可以飞翔”)。然而,它们并不是普遍真实的 -- -- 麻雀和企鹅都是鸟类,只有麻雀和企鹅可以飞翔,企鹅是不能飞翔的。常识知识基础,在许多NLP任务中广泛使用,作为世界知识的源泉,往往可以将通用知识编码,但根据设计,无法对此类例外进行编码。因此,实现通用说明是真实的或虚假的具体实例至关重要。在这项工作中,我们提出了一个新颖的框架,以产生实用的、真实和虚假的通用实例。我们使用预先培训的语言模型,根据语言理论的洞察力来限制下一代,并生产出价为650美元的通用美元。我们的系统比GPT-3的几发一代(精确点为12.5分)和我们的分析强调了限制解码对于这项任务的重要性以及通用参数对语言推导任务的影响。