Real-world 3D data may contain intricate details defined by salient surface gaps. Automated reconstruction of these open surfaces (e.g., non-watertight meshes) is a challenging problem for environment synthesis in mixed reality applications. Current learning-based implicit techniques can achieve high fidelity on closed-surface reconstruction. However, their dependence on the distinction between the inside and outside of a surface makes them incapable of reconstructing open surfaces. Recently, a new class of implicit functions have shown promise in reconstructing open surfaces by regressing an unsigned distance field. Yet, these methods rely on a discretized representation of the raw data, which loses important surface details and can lead to outliers in the reconstruction. We propose IPVNet, a learning-based implicit model that predicts the unsigned distance between a surface and a query point in 3D space by leveraging both raw point cloud data and its discretized voxel counterpart. Experiments on synthetic and real-world public datasets demonstrates that IPVNet outperforms the state of the art while producing far fewer outliers in the reconstruction.
翻译:现实世界 3D 数据可能包含由显著表面差距定义的复杂细节。 这些开放表面( 如非水密网) 的自动重建是复杂的问题, 在复杂的现实应用中环境合成是一个棘手的问题。 目前基于学习的隐含技术可以在封闭地面重建中实现高度忠诚。 但是,它们依赖地表内外的区分,使得它们无法重建开放的表面。 最近, 一种新的隐含功能类别显示通过递减未指定的距离字段来重建开放表面的前景。 然而, 这些方法依赖于原始数据的离散化表达方式, 从而失去了重要的表面细节, 并可能导致重建中的外缘值。 我们建议使用IPVNet, 这是一种基于学习的隐含模型, 通过利用原始点云数据及其离散的 voxel 等数据来预测3D 空间的表面和查询点之间的未指定距离。 在合成和真实世界的公共数据集上进行实验表明, IPVNet 超越了艺术的状态, 同时在重建中生成的外部值要小得多。