In order to protect intellectual property against untrusted foundry, many logic-locking schemes have been developed. The main idea of logic locking is to insert a key-controlled block into a circuit to make the circuit function incorrectly without right keys. However, in the case that the algorithm implemented by the circuit is naturally fault-tolerant or self-correcting, existing logic-locking schemes do not affect the system performance much even if wrong keys are used. One example is low-density parity-check (LDPC) error-correcting decoder, which has broad applications in digital communications and storage. This paper proposes two algorithmic-level obfuscation methods for LDPC decoders. By modifying the decoding process and locking the stopping criterion, our new designs substantially degrade the decoder throughput and/or error-correcting performance when the wrong key is used. Besides, our designs are also resistant to the SAT, AppSAT and removal attacks. For an example LDPC decoder, our proposed methods reduce the throughput to less than 1/3 and/or increase the decoder error rate by at least two orders of magnitude with only 0.33% area overhead.


翻译:为了保护知识产权免遭不信任的发现,已经制定了许多逻辑锁定方案。逻辑锁定的主要理念是在电路中插入一个关键控制区块,使电路功能不正确而没有正确钥匙。然而,如果电路执行的算法是自然的错误耐受性或自我校正,即使使用错误的密钥,现有的逻辑锁定方案也不会对系统性能产生很大影响。一个例子是低密度对等检查(LDPC)错误校正解码器,它在数字通信和存储方面有着广泛的应用。本文为LDPC解码器提出了两种算法级混淆法。通过修改解码过程和锁定停止标准,我们的新设计大大地降低了解码器的吞吐量和/或错误校正性,此外,我们的设计也与SAT、AppSAT和清除攻击相抗力。例如LDPC解码,我们提出的方法使解码率降低到不到1/3和/或提高解码错误率率,在最小的2个端点上只增加0.3的磁度。

0
下载
关闭预览

相关内容

专知会员服务
21+阅读 · 2021年5月27日
【经典书】算法博弈论,775页pdf,Algorithmic Game Theory
专知会员服务
149+阅读 · 2021年5月9日
专知会员服务
50+阅读 · 2020年12月14日
专知会员服务
52+阅读 · 2020年11月3日
专知会员服务
109+阅读 · 2020年3月12日
2019年机器学习框架回顾
专知会员服务
35+阅读 · 2019年10月11日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
异常检测论文大列表:方法、应用、综述
专知
126+阅读 · 2019年7月15日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
Call for Participation: Shared Tasks in NLPCC 2019
中国计算机学会
5+阅读 · 2019年3月22日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
Soft-NMS – Improving Object Detection With One Line of Code
统计学习与视觉计算组
6+阅读 · 2018年3月30日
(TensorFlow)实时语义分割比较研究
机器学习研究会
9+阅读 · 2018年3月12日
【音乐】Attention
英语演讲视频每日一推
3+阅读 · 2017年8月22日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Arxiv
0+阅读 · 2021年6月1日
Arxiv
0+阅读 · 2021年6月1日
Arxiv
8+阅读 · 2021年5月9日
Hierarchy Parsing for Image Captioning
Arxiv
6+阅读 · 2019年9月10日
S4Net: Single Stage Salient-Instance Segmentation
Arxiv
10+阅读 · 2019年4月10日
VIP会员
相关VIP内容
专知会员服务
21+阅读 · 2021年5月27日
【经典书】算法博弈论,775页pdf,Algorithmic Game Theory
专知会员服务
149+阅读 · 2021年5月9日
专知会员服务
50+阅读 · 2020年12月14日
专知会员服务
52+阅读 · 2020年11月3日
专知会员服务
109+阅读 · 2020年3月12日
2019年机器学习框架回顾
专知会员服务
35+阅读 · 2019年10月11日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
相关资讯
异常检测论文大列表:方法、应用、综述
专知
126+阅读 · 2019年7月15日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
Call for Participation: Shared Tasks in NLPCC 2019
中国计算机学会
5+阅读 · 2019年3月22日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
Soft-NMS – Improving Object Detection With One Line of Code
统计学习与视觉计算组
6+阅读 · 2018年3月30日
(TensorFlow)实时语义分割比较研究
机器学习研究会
9+阅读 · 2018年3月12日
【音乐】Attention
英语演讲视频每日一推
3+阅读 · 2017年8月22日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Top
微信扫码咨询专知VIP会员