To interpret uncertainty estimates from differentiable probabilistic models, recent work has proposed generating Counterfactual Latent Uncertainty Explanations (CLUEs). However, for a single input, such approaches could output a variety of explanations due to the lack of constraints placed on the explanation. Here we augment the original CLUE approach, to provide what we call $\delta$-CLUE. CLUE indicates \emph{one} way to change an input, while remaining on the data manifold, such that the model becomes more confident about its prediction. We instead return a \emph{set} of plausible CLUEs: multiple, diverse inputs that are within a $\delta$ ball of the original input in latent space, all yielding confident predictions.
翻译:为了解释来自不同概率模型的不确定性估计,最近的工作建议生成反事实延迟不确定性解释(CLUEs ) 。 但是,对于一个单一的投入,这种方法可以输出各种解释,因为解释缺乏限制。 我们在这里增加了最初的CLUE方法, 以提供我们所谓的$delta$-CLUE。 CLUE 表示改变输入的方法, 同时又保留在数据方块上, 使模型对其预测更有信心。 我们反之, 返回了可信的 CLUEs 的 \ emph{ set : 多种不同的输入, 这些输入是在 $\ delta$- CLUE 的原始输入球内, 都产生了自信的预测 。