Generative Adversarial Networks (GANs) have become the de-facto standard in image synthesis. However, without considering the foreground-background decomposition, existing GANs tend to capture excessive content correlation between foreground and background, thus constraining the diversity in image generation. This paper presents a novel Foreground-Background Composition GAN (FBC-GAN) that performs image generation by generating foreground objects and background scenes concurrently and independently, followed by composing them with style and geometrical consistency. With this explicit design, FBC-GAN can generate images with foregrounds and backgrounds that are mutually independent in contents, thus lifting the undesirably learned content correlation constraint and achieving superior diversity. It also provides excellent flexibility by allowing the same foreground object with different background scenes, the same background scene with varying foreground objects, or the same foreground object and background scene with different object positions, sizes and poses. It can compose foreground objects and background scenes sampled from different datasets as well. Extensive experiments over multiple datasets show that FBC-GAN achieves competitive visual realism and superior diversity as compared with state-of-the-art methods.


翻译:在图像合成中,显性生成的Adversarial 网络(GANs)已经成为了立形标准。然而,在不考虑地表背景分解的情况下,现有的GANs往往会捕捉到地表和背景之间过分的内容相关性,从而限制图像生成的多样性。本文展示了一个新型的地表背景构成GAN(FBC-GAN),通过同时和独立生成地表对象和背景场景来进行图像生成,然后以风格和几何一致性将其组合成。有了这一明确的设计,FBC-GAN可以生成带有地表和背景的图像,这些图像在内容上相互独立,从而提升了不可取的学习内容关联性约束,并实现了更高的多样性。通过允许具有不同背景场景的相同的地表背景对象,或具有不同对象位置、大小和姿势的相同的地表对象和背景场景,来进行图像生成。FBC-GAN可以在多种数据集上进行广泛的实验,同时与FArt-BC-G-G的视觉多样性相比,显示FArt-V-G-Val-As-C-As

0
下载
关闭预览

相关内容

 【SIGGRAPH 2020】人像阴影处理,Portrait Shadow Manipulation
专知会员服务
28+阅读 · 2020年5月19日
Hierarchically Structured Meta-learning
CreateAMind
25+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
条件GAN重大改进!cGANs with Projection Discriminator
CreateAMind
8+阅读 · 2018年2月7日
计算机视觉近一年进展综述
机器学习研究会
9+阅读 · 2017年11月25日
Capsule Networks解析
机器学习研究会
11+阅读 · 2017年11月12日
gan生成图像at 1024² 的 代码 论文
CreateAMind
4+阅读 · 2017年10月31日
MoCoGAN 分解运动和内容的视频生成
CreateAMind
18+阅读 · 2017年10月21日
Foreground-aware Image Inpainting
Arxiv
4+阅读 · 2019年1月17日
Video-to-Video Synthesis
Arxiv
9+阅读 · 2018年8月20日
Arxiv
7+阅读 · 2018年1月21日
VIP会员
相关VIP内容
 【SIGGRAPH 2020】人像阴影处理,Portrait Shadow Manipulation
专知会员服务
28+阅读 · 2020年5月19日
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
25+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
条件GAN重大改进!cGANs with Projection Discriminator
CreateAMind
8+阅读 · 2018年2月7日
计算机视觉近一年进展综述
机器学习研究会
9+阅读 · 2017年11月25日
Capsule Networks解析
机器学习研究会
11+阅读 · 2017年11月12日
gan生成图像at 1024² 的 代码 论文
CreateAMind
4+阅读 · 2017年10月31日
MoCoGAN 分解运动和内容的视频生成
CreateAMind
18+阅读 · 2017年10月21日
Top
微信扫码咨询专知VIP会员