Recognizing a basic difference between the semiotics of humans and machines presents a possibility to overcome the shortcomings of current speech assistive devices. For the machine, the meaning of a (human) utterance is defined by its own scope of actions. Machines, thus, do not need to understand the conventional meaning of an utterance. Rather, they draw conversational implicatures in the sense of (neo-)Gricean pragmatics. For speech assistive devices, the learning of machine-specific meanings of human utterances, i.e. the fossilization of conversational implicatures into conventionalized ones by trial and error through lexicalization appears to be sufficient. Using the quite trivial example of a cognitive heating device, we show that - based on dynamic semantics - this process can be formalized as the reinforcement learning of utterance-meaning pairs (UMP).
翻译:暂无翻译