Introducing blockchain into Federated Learning (FL) to build a trusted edge computing environment for transmission and learning has become a new decentralized learning pattern, which has received extensive attention. However, the traditional consensus mechanism and architecture of blockchain systems can hardly handle the large-scale FL task and run on IoT devices due to the huge resource consumption, limited transaction throughput, and high communication complexity. To address these issues, this paper proposes a two-layer blockchain-driven FL system, called ChainFL, which splits the IoT network into multiple shards as the subchain layer to limit the scale of information exchange, and adopts a Direct Acyclic Graph (DAG)-based mainchain as the mainchain layer to achieve parallel and asynchronous cross-shard validation. Furthermore, the FL procedure is customized to deeply integrate with blockchain technology, and the modified DAG consensus mechanism is proposed to mitigate the distortion caused by abnormal models. To provide a proof-of-concept implementation and evaluation, multiple subchains based on Hyperledger Fabric and the self-developed DAG-based mainchain are deployed. The extensive experimental results demonstrated that our proposed ChainFL system outperforms the existing main FL systems in terms of acceptable and fast training efficiency (by up to 14%) and stronger robustness (by up to three times).


翻译:为解决这些问题,本文件建议采用双层链式链路系统,称为链式链路系统,将IOT网络分为多个碎片,作为子链层,以限制信息交流的规模,并采用基于直接循环图(DAG)的主链,作为主链层,以实现平行和不同步的跨硬体验证;此外,由于资源消耗巨大,交易量有限,且通信复杂,因此传统共识机制和结构很难处理大型FL任务,在IOT设备上运行;为了解决这些问题,本文件提议采用一个双层链式链路系统,称为链式链路,将IOT网络分为多个碎片,作为分链路,作为分层,以限制信息交流的规模,并采用基于直接循环图(DAG)的主链,作为主链路段,实现平行和不同步的跨硬体验证;此外,FL程序是定制的,以深入融入链路技术,并提议修改DAG共识机制,以缓解异常模式造成的扭曲现象;为了提供检测和评价证据,基于超升式的FAG和自开发的DAG主链路段的多条,采用直接的链路段,以达到可接受的主要链路段。 广泛试验结果显示,现有14级系统以可接受的FLFLFlFFFFFFFFFFFFFFFFFFF格式的快速系统的现有快速系统的现有系统现有13格式的可靠、快速系统,以可接受。

0
下载
关闭预览

相关内容

【2022新书】高效深度学习,Efficient Deep Learning Book
专知会员服务
120+阅读 · 2022年4月21日
专知会员服务
45+阅读 · 2020年10月31日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
154+阅读 · 2019年10月12日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
104+阅读 · 2019年10月9日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
41+阅读 · 2019年10月9日
Twitter大佬在线讲座:GNN through the Lens of Curvature
图与推荐
1+阅读 · 2022年4月12日
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium3
中国图象图形学学会CSIG
0+阅读 · 2021年11月9日
【ICIG2021】Latest News & Announcements of the Industry Talk2
中国图象图形学学会CSIG
0+阅读 · 2021年7月29日
【ICIG2021】Latest News & Announcements of the Industry Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年7月28日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年8月18日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Arxiv
0+阅读 · 2022年10月4日
VIP会员
相关VIP内容
【2022新书】高效深度学习,Efficient Deep Learning Book
专知会员服务
120+阅读 · 2022年4月21日
专知会员服务
45+阅读 · 2020年10月31日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
154+阅读 · 2019年10月12日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
104+阅读 · 2019年10月9日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
41+阅读 · 2019年10月9日
相关资讯
Twitter大佬在线讲座:GNN through the Lens of Curvature
图与推荐
1+阅读 · 2022年4月12日
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium3
中国图象图形学学会CSIG
0+阅读 · 2021年11月9日
【ICIG2021】Latest News & Announcements of the Industry Talk2
中国图象图形学学会CSIG
0+阅读 · 2021年7月29日
【ICIG2021】Latest News & Announcements of the Industry Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年7月28日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年8月18日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Top
微信扫码咨询专知VIP会员