The Yeo-Johnson (YJ) transformation is a standard parametrized per-feature unidimensional transformation often used to Gaussianize features in machine learning. In this paper, we investigate the problem of applying the YJ transformation in a cross-silo Federated Learning setting under privacy constraints. For the first time, we prove that the YJ negative log-likelihood is in fact convex, which allows us to optimize it with exponential search. We numerically show that the resulting algorithm is more stable than the state-of-the-art approach based on the Brent minimization method. Building on this simple algorithm and Secure Multiparty Computation routines, we propose SecureFedYJ, a federated algorithm that performs a pooled-equivalent YJ transformation without leaking more information than the final fitted parameters do. Quantitative experiments on real data demonstrate that, in addition to being secure, our approach reliably normalizes features across silos as well as if data were pooled, making it a viable approach for safe federated feature Gaussianization.
翻译:Yeo- Johnson (YJ) 变换是一种标准的单维变换, 通常用于在机器学习中进行 Gaussian 的功能。 在本文中, 我们调查了在隐私限制下在跨西罗联邦学习环境中应用YJ变换的问题。 我们第一次证明YJ的负日志相似性实际上是共和的, 这使我们能够用指数搜索优化它。 我们用数字显示, 由此产生的算法比基于Brent 最小化方法的最先进的算法更加稳定。 基于这一简单的算法和安全的多党计算常规, 我们提议SecureFedYJ, 这是一种联合算法, 在一个不泄露比最后设定参数更多的信息的集合等值YJ变换。 关于真实数据的定量实验表明, 除了安全之外, 我们的方法还可靠地使整个发射场的特性正常化, 以及如果数据被集中起来, 使它成为安全化的辅助特性的可行方法 。