Federated learning (FL) strives to enable collaborative training of machine learning models without centrally collecting clients' private data. Different from centralized training, the local datasets across clients in FL are non-independent and identically distributed (non-IID). In addition, the data-owning clients may drop out of the training process arbitrarily. These characteristics will significantly degrade the training performance. This paper proposes a Dropout-Resilient Secure Federated Learning (DReS-FL) framework based on Lagrange coded computing (LCC) to tackle both the non-IID and dropout problems. The key idea is to utilize Lagrange coding to secretly share the private datasets among clients so that each client receives an encoded version of the global dataset, and the local gradient computation over this dataset is unbiased. To correctly decode the gradient at the server, the gradient function has to be a polynomial in a finite field, and thus we construct polynomial integer neural networks (PINNs) to enable our framework. Theoretical analysis shows that DReS-FL is resilient to client dropouts and provides privacy protection for the local datasets. Furthermore, we experimentally demonstrate that DReS-FL consistently leads to significant performance gains over baseline methods.
翻译:联邦学习联合会(FL) 致力于在不集中收集客户私人数据的情况下,使机器学习模式的合作培训能够不集中收集客户的私人数据。与集中培训不同的是,FL客户的当地数据集不独立,分布相同(非IID)。此外,数据所有客户可能会任意退出培训过程。这些特点将大大降低培训绩效。本文件提议基于Lagrange编码计算(LCC)的辍学-弹性安全联邦学习框架(DRES-FL),以解决非IID和辍学问题。关键的想法是利用Lagrange编码在客户间秘密分享私人数据集,以便每个客户都能得到全球数据集的编码版本,而本地梯度计算是公正的。为了正确解码服务器的梯度,梯度函数必须是有限域的多数值,因此我们建造了多数值组合神经网络(PINN),以便能够解决我们的框架。理论分析显示,DRES-FL具有适应客户辍学的能力,并为当地数据基准设定的连续实验性收益提供隐私保护。此外,我们ReS-FL将持续地显示,D-FL 。