Despite the growing demand for interactive AI systems, there have been few comprehensive studies on human-AI interaction in visual understanding e.g. segmentation. Inspired by the development of prompt-based universal interfaces for LLMs, this paper presents SEEM, a promptable, interactive model for Segmenting Everything Everywhere all at once in an image. SEEM has four desiderata: i) Versatility: by introducing a versatile prompting engine for different types of prompts, including points, boxes, scribbles, masks, texts, and referred regions of another image; ii) Compositionality: by learning a joint visual-semantic space for visual and textual prompts to compose queries on the fly for inference as shown in Fig 1; iii)Interactivity: by incorporating learnable memory prompts to retain dialog history information via mask-guided cross-attention; and iv) Semantic-awareness: by using a text encoder to encode text queries and mask labels for open-vocabulary segmentation.
翻译:尽管交互式AI系统的需求正在增长,但在视觉理解如分割方面的人工智能交互方面,缺乏全面的研究。受LLM的提示型通用接口的发展启发,本文提出了SEEM,一种可提示、交互式模型,用于一次性地在图像中分割所有东西。 SEEM有四个期望:i)多功能性:通过引入适用于不同类型提示的多功能提示引擎,包括点、框、涂鸦、遮罩、文本和另一幅图像的相关区域; ii)组合性:通过学习视觉和文本提示的联合视觉语义空间,实时组合查询,用于推理; iii)交互性:通过引入可学习的内存提示,通过遮罩引导交叉注意力,保留对话历史信息;以及 iv)语义感知性:使用文本编码器对文本查询和遮罩标签进行编码,进行开放式词汇的分割。