tl;dr: no, it cannot, at least not on average on the standard archive problems. We assess whether using six smoothing algorithms (moving average, exponential smoothing, Gaussian filter, Savitzky-Golay filter, Fourier approximation and a recursive median sieve) could be automatically applied to time series classification problems as a preprocessing step to improve the performance of three benchmark classifiers (1-Nearest Neighbour with Euclidean and Dynamic Time Warping distances, and Rotation Forest). We found no significant improvement over unsmoothed data even when we set the smoothing parameter through cross validation. We are not claiming smoothing has no worth. It has an important role in exploratory analysis and helps with specific classification problems where domain knowledge can be exploited. What we observe is that the automatic application does not help and that we cannot explain the improvement of other time series classification algorithms over the baseline classifiers simply as a function of the absence of smoothing.
翻译:tl; dr: 不, 它不能, 至少平均不能。 我们评估使用六种平滑算法( 移动平均、 指数平滑、 Gaussian 过滤器、 Savitzky- Golay 过滤器、 Fourier 近似和循环中位筛选器) 是否可自动适用于时间序列分类问题, 作为提高三个基准分类器( 1 - Nearest 邻里有 Euclidean 和动态时间扭曲距离, 以及旋转森林)的性能的预处理步骤 。 我们发现, 即使在我们通过交叉验证设定平滑参数时, 没有显著的改进。 我们并不声称平滑毫无价值。 它在探索性分析中具有重要作用, 并帮助解决特定分类问题, 以便利用域知识。 我们观察到的是, 自动应用程序无助于改进三个基准分类器( 1 - Nearest 邻里有 Euclidean 和动态时间扭曲距离, 以及旋转森林 ) 。 我们无法解释其他时间序列分类算法的改进仅仅因为没有平滑动功能。