An assembly is a large population of neurons whose synchronous firing is hypothesized to represent a memory, concept, word, and other cognitive categories. Assemblies are believed to provide a bridge between high-level cognitive phenomena and low-level neural activity. Recently, a computational system called the Assembly Calculus (AC), with a repertoire of biologically plausible operations on assemblies, has been shown capable of simulating arbitrary space-bounded computation, but also of simulating complex cognitive phenomena such as language, reasoning, and planning. However, the mechanism whereby assemblies can mediate learning has not been known. Here we present such a mechanism, and prove rigorously that, for simple classification problems defined on distributions of labeled assemblies, a new assembly representing each class can be reliably formed in response to a few stimuli from the class; this assembly is henceforth reliably recalled in response to new stimuli from the same class. Furthermore, such class assemblies will be distinguishable as long as the respective classes are reasonably separated -- for example, when they are clusters of similar assemblies. To prove these results, we draw on random graph theory with dynamic edge weights to estimate sequences of activated vertices, yielding strong generalizations of previous calculations and theorems in this field over the past five years. These theorems are backed up by experiments demonstrating the successful formation of assemblies which represent concept classes on synthetic data drawn from such distributions, and also on MNIST, which lends itself to classification through one assembly per digit. Seen as a learning algorithm, this mechanism is entirely online, generalizes from very few samples, and requires only mild supervision -- all key attributes of learning in a model of the brain.
翻译:集合是一个庞大的神经元群, 这些神经元的同步发射被假设为代表一个记忆、概念、文字和其他认知类别。 集会被认为是在高层次认知现象和低层次神经活动之间提供一个桥梁。 最近, 一个叫做大会计算器(AC)的计算系统(AC), 包含一系列在集会上的生物可信的操作, 显示能够模拟任意的空间限制计算, 但也模拟复杂的认知现象, 如语言、 推理和规划。 然而, 集会可以进行调解学习的机制尚未为人所知。 我们在这里展示了这样一个机制, 并且严格地证明, 对于在标签组件分布上定义的简单分类问题, 代表每个阶级的新组可以可靠地组成一个名为大会计算器(AC AC) 的计算器, 并配有一系列由同一类的新的模拟计算器。 此外, 这些类的组合将随着不同的类别被合理分离而可以被区分 -- 例如, 当它们属于类似的组合的分类时, 我们用一个具有动态边缘等级的随机模型, 来估计每个等级的大脑的等级, 需要通过过去一系列的模拟的模拟, 成功的模拟, 模拟的模拟的模拟, 和整个运动的模拟的模拟的模拟的模拟, 学习。