We introduce Deep Adaptive Design (DAD), a method for amortizing the cost of adaptive Bayesian experimental design that allows experiments to be run in real-time. Traditional sequential Bayesian optimal experimental design approaches require substantial computation at each stage of the experiment. This makes them unsuitable for most real-world applications, where decisions must typically be made quickly. DAD addresses this restriction by learning an amortized design network upfront and then using this to rapidly run (multiple) adaptive experiments at deployment time. This network represents a design policy which takes as input the data from previous steps, and outputs the next design using a single forward pass; these design decisions can be made in milliseconds during the live experiment. To train the network, we introduce contrastive information bounds that are suitable objectives for the sequential setting, and propose a customized network architecture that exploits key symmetries. We demonstrate that DAD successfully amortizes the process of experimental design, outperforming alternative strategies on a number of problems.
翻译:我们引入深调制设计(DAD), 这是一种可以实时进行实验的适应性巴伊西亚实验设计成本摊还方法。 传统的波亚山脉最佳实验设计方法需要在实验的每个阶段进行大量计算。 这使得它们不适合大多数现实世界应用, 通常必须迅速作出决定。 DAD通过在部署时先学习一个摊还设计网络, 然后在部署时将它用于快速运行( 多功能)适应性实验来解决这一限制。 这个网络是一种设计政策, 将以前步骤的数据作为输入, 并用一个前方传票输出下一个设计; 这些设计决定可以在现场实验中以毫秒进行。 为了培训网络, 我们引入了对比性信息界限, 以适合顺序设置的目标, 并提议一个开发关键对称的定制网络结构 。 我们证明 DAD 成功地将实验设计过程集中起来, 在许多问题上优于其他战略 。