In this paper, we present a Stochastic Deep Neural Network-based Model Reference Adaptive Control. Building on our work "Deep Model Reference Adaptive Control", we extend the controller capability by using Bayesian deep neural networks (DNN) to represent uncertainties and model non-linearities. Stochastic Deep Model Reference Adaptive Control uses a Lyapunov-based method to adapt the output-layer weights of the DNN model in real-time, while a data-driven supervised learning algorithm is used to update the inner-layers parameters. This asynchronous network update ensures boundedness and guaranteed tracking performance with a learning-based real-time feedback controller. A Bayesian approach to DNN learning helped avoid over-fitting the data and provide confidence intervals over the predictions. The controller's stochastic nature also ensured "Induced Persistency of excitation," leading to convergence of the overall system signal.
翻译:在本文中,我们展示了一个基于“深深神经网络”的模型参考适应控制模型。我们以我们的工作“深模型参考适应控制”为基础,通过使用贝叶西亚深神经网络(DNN)代表不确定性和非线性模型来扩展控制器能力。斯托切深模型参考适应控制模型使用一种基于Lyapunov的方法实时调整DNN模型的输出层重量,同时使用数据驱动的受监督的学习算法更新内层参数。这种不同步的网络更新确保了与基于学习的实时反馈控制器之间的界限和保证跟踪性能。Bayesian的DNN学习方法帮助避免了数据的过度配置,并为预测提供了信任间隔。控制器的随机性也确保了“诱发引力的持久性”,导致整个系统信号的趋同。